Acceso abierto

A single differential equation description of membrane properties underlying the action potential and the axon electric field


Cite

R.F. Melendy, Resolving the biophysics of axon transmembrane polarization in a single closed-form description. Journal of Applied Physics, 118(24), (2015). https://doi.org/10.1063/1.4939278MelendyR.F.Resolving the biophysics of axon transmembrane polarization in a single closed-form descriptionJournal of Applied Physics118242015https://doi.org/10.1063/1.493927810.1063/1.4939278Search in Google Scholar

R.F. Melendy, A subsequent closed-form description of propagated signaling phenomena in the membrane of an axon. AIP Advances, 6(5), (2016). https://doi.org/10.1063/1.4948985MelendyR.F.A subsequent closed-form description of propagated signaling phenomena in the membrane of an axonAIP Advances652016https://doi.org/10.1063/1.494898510.1063/1.4948985Search in Google Scholar

A.L. Hodgkin, Evidence for electrical transmission in nerve. Journal of Physiology, 90, 183-210 (1937). https://doi.org/10.1113/jphysiol.1937.sp003507HodgkinA.L.Evidence for electrical transmission in nerveJournal of Physiology901832101937https://doi.org/10.1113/jphysiol.1937.sp00350710.1113/jphysiol.1937.sp003507139506016994885Search in Google Scholar

J.B. Hursh, Conduction velocity and diameter of nerve fibers. American Journal of Physiology, 127, 131-139 (1939). https://doi.org/10.1152/ajplegacy.1939.127.1.131HurshJ.B.Conduction velocity and diameter of nerve fibersAmerican Journal of Physiology1271311391939https://doi.org/10.1152/ajplegacy.1939.127.1.13110.1152/ajplegacy.1939.127.1.131Search in Google Scholar

B. Frankenhaeuser, The ionic currents in the myelinated nerve fiber. Journal of General Physiology, 48, 79-81 (1965). https://doi.org/10.1085/jgp.48.5.79FrankenhaeuserB.The ionic currents in the myelinated nerve fiberJournal of General Physiology4879811965https://doi.org/10.1085/jgp.48.5.7910.1085/jgp.48.5.79221377514326141Search in Google Scholar

B. Naundorf, F. Wolf, M. Volgushev, Unique features of action potential initiation in cortical neurons. Nature, 440, 1060-1063 (2006). https://doi.org/10.1038/nature04610NaundorfB.WolfF.VolgushevM.Unique features of action potential initiation in cortical neuronsNature440106010632006https://doi.org/10.1038/nature0461010.1038/nature0461016625198Search in Google Scholar

K.S. Cole, H.J. Curtis, Electric impedance of the squid giant axon during activity. Journal of General Physiology, 22, 649-670 (1939). https://doi.org/10.1085/jgp.22.5.649ColeK.S.CurtisH.J.Electric impedance of the squid giant axon during activityJournal of General Physiology226496701939https://doi.org/10.1085/jgp.22.5.64910.1085/jgp.22.5.649214200619873125Search in Google Scholar

D.E. Goldman, Potential, impedance, and rectification in membranes. Journal of General Physiology, 27, 37-60 (1943). https://doi.org/10.1085/jgp.27.1.37GoldmanD.E.Potential, impedance, and rectification in membranesJournal of General Physiology2737601943https://doi.org/10.1085/jgp.27.1.3710.1085/jgp.27.1.37214258219873371Search in Google Scholar

A.L. Hodgkin, B. Katz, The effect of sodium ions on the electrical activity of the giant axon of the squid. Journal of Physiology, 108, 37-77 (1949). https://doi.org/10.1113/jphysiol.1949.sp004310HodgkinA.L.KatzB.The effect of sodium ions on the electrical activity of the giant axon of the squidJournal of Physiology10837771949https://doi.org/10.1113/jphysiol.1949.sp00431010.1113/jphysiol.1949.sp004310139233118128147Search in Google Scholar

J. Koester, S.A. Siegelbaum, in Principles of Neural Science, E.R. Kandel, J.H. Schwartz, T.M. Jessell, Eds. (McGraw-Hill, New York, 2000), pp. 140-149.KoesterJ.SiegelbaumS.A.Principles of Neural ScienceKandelE.R.SchwartzJ.H.JessellT.M.McGraw-HillNew York2000140149Search in Google Scholar

A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500-544 (1952). https://doi.org/10.1113/jphysiol.1952.sp004764HodgkinA.L.HuxleyA.F.A quantitative description of membrane current and its application to conduction and excitation in nerveJournal of Physiology117500-5441952https://doi.org/10.1113/jphysiol.1952.sp00476410.1113/jphysiol.1952.sp004764139241312991237Search in Google Scholar

R.E. Taylor, in Physical Techniques in Biological Research, W.L. Natsiik, Ed. (Academic Press, New York, 1963), pp. 219-262.TaylorR.E.Physical Techniques in Biological ResearchNatsiikW.L.Academic PressNew York1963219262Search in Google Scholar

R. Iansek, S.J. Redman, An analysis of the cable properties of spinal motoneurones using a brief intracellular current pulse. Journal of Physiology, 234, 613-636 (1973). https://doi.org/10.1113/jphysiol.1973.sp010364IansekR.RedmanS.J.An analysis of the cable properties of spinal motoneurones using a brief intracellular current pulseJournal of Physiology2346136361973https://doi.org/10.1113/jphysiol.1973.sp01036410.1113/jphysiol.1973.sp010364Search in Google Scholar

W. Rall, J. Segev, The Theoretical Foundation of Dendritic Function: Selected Papers of Wilfrid Rall with Commentaries (MIT Press, Boston, MA, 1995).RallW.SegevJ.The Theoretical Foundation of Dendritic Function: Selected Papers of Wilfrid Rall with CommentariesMIT PressBoston, MA1995Search in Google Scholar

M. London, C. Meunier, I. Segev, Signal transfer in passive dendrites with nonuniform membrane conductance. Journal of Neuroscience, 19, 8219-8233 (1999). https://doi.org/10.1523/JNEUROSCI.19-19-08219.1999LondonM.MeunierC.SegevI.Signal transfer in passive dendrites with nonuniform membrane conductanceJournal of Neuroscience19821982331999https://doi.org/10.1523/JNEUROSCI.19-19-08219.199910.1523/JNEUROSCI.19-19-08219.1999Search in Google Scholar

F. Nadim, J. Golowasch, Signal transmission between gap-junctionally coupled passive cables is most effective at an optimal diameter. Journal of Neurophysiology, 95, 3831-3843 (2006). https://doi.org/10.1152/jn.00033.2006NadimF.GolowaschJ.Signal transmission between gap-junctionally coupled passive cables is most effective at an optimal diameterJournal of Neurophysiology95383138432006https://doi.org/10.1152/jn.00033.200610.1152/jn.00033.2006Search in Google Scholar

H.M. Lieberstein, On the Hodgkin-Huxley partial differential equation. Mathematical Biosciences, 1, 45-69 (1967). https://doi.org/10.1016/0025-5564(67)90026-0LiebersteinH.M.On the Hodgkin-Huxley partial differential equationMathematical Biosciences145691967https://doi.org/10.1016/0025-5564(67)90026-010.1016/0025-5564(67)90026-0Search in Google Scholar

W. Rall, Core Conductor Theory and Cable Properties of Neurons: Handbook of Physiology, the Nervous System, Cellular Biology of Neurons (American Physiological Society, 1977), pp. 39-93.RallW.Core Conductor Theory and Cable Properties of Neurons: Handbook of Physiology, the Nervous System, Cellular Biology of NeuronsAmerican Physiological Society1977399310.1002/cphy.cp010103Search in Google Scholar

R. West, E. Schutter, G. Wilcox, in The IMA Volumes in Mathematics and its Applications: Evolutionary Algorithms, L.D. Davis et al., Eds. (Springer, New York, 1999), pp. 33-64.WestR.SchutterE.WilcoxG.The IMA Volumes in Mathematics and its Applications: Evolutionary AlgorithmsDavisL.D.SpringerNew York1999336410.1007/978-1-4612-1542-4_3Search in Google Scholar

C. Bédard, A. Destexhe, A modified cable formalism for modeling neuronal membranes at high frequencies. Biophysical Journal, 94, 1133-1143 (2008). https://doi.org/10.1529/biophysj.107.113571BédardC.DestexheA.A modified cable formalism for modeling neuronal membranes at high frequenciesBiophysical Journal94113311432008https://doi.org/10.1529/biophysj.107.11357110.1529/biophysj.107.113571Search in Google Scholar

J.J.B. Jack, D. Noble, R.W. Tsien, Electric Current Flow in Excitable Cells (Clarendon Press, Oxford, 1975).JackJ.J.B.NobleD.TsienR.W.Electric Current Flow in Excitable CellsClarendon Press, Oxford1975Search in Google Scholar

D. Sterratt, Principles of Computational Modelling in Neuroscience (Cambridge University Press, Cambridge, 2011). https://doi.org/10.1017/CBO9780511975899SterrattD.Principles of Computational Modelling in NeuroscienceCambridge University PressCambridge2011https://doi.org/10.1017/CBO978051197589910.1017/CBO9780511975899Search in Google Scholar

R. Hobbie, Intermediate Physics for Medicine and Biology (AIP Press, New York, 1997).HobbieR.Intermediate Physics for Medicine and BiologyAIP PressNew York1997Search in Google Scholar

R. Plonsey, R. Barr, Bioelectricity: A Quantitative Approach (Springer, Boston, 2000). https://doi.org/10.1007/978-1-4757-3152-1PlonseyR.BarrR.Bioelectricity: A Quantitative ApproachSpringerBoston2000https://doi.org/10.1007/978-1-4757-3152-110.1007/978-1-4757-3152-1Search in Google Scholar

N. Sperelakis, N. Sperelakis, Cell Physiology Sourcebook: Essentials of Membrane Biophysics (Academic Press, London, 2012).SperelakisN.SperelakisN.Cell Physiology Sourcebook: Essentials of Membrane BiophysicsAcademic PressLondon2012Search in Google Scholar

J. Malmivuo, R. Plonsey, Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields (Oxford University Press, New York, 2000).MalmivuoJ.PlonseyR.Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic FieldsOxford University PressNew York2000Search in Google Scholar

B. Roth, J. Wikswo, The magnetic field of a single axon: a comparison of theory and experiment. Biophysical Journal, 48, 93-109 (1985). https://doi.org/10.1016/S0006-3495(85)83763-2RothB.WikswoJ.The magnetic field of a single axon: a comparison of theory and experimentBiophysical Journal48931091985https://doi.org/10.1016/S0006-3495(85)83763-210.1016/S0006-3495(85)83763-2Search in Google Scholar

B. Roth, J. Wikswo, The electrical potential and the magnetic field of an axon in a nerve bundle. Mathematical Biosciences, 76, 37-57 (1985). https://doi.org/10.1016/0025-5564(85)90045-8RothB.WikswoJ.The electrical potential and the magnetic field of an axon in a nerve bundleMathematical Biosciences7637571985https://doi.org/10.1016/0025-5564(85)90045-810.1016/0025-5564(85)90045-8Search in Google Scholar

R.S. Wijesinghe, Detection of magnetic fields created by biological tissues. Journal of Electrical and Electronic Systems, 3, 1-7 (2014). https://doi.org/10.4172/2332-0796.1000120WijesingheR.S.Detection of magnetic fields created by biological tissuesJournal of Electrical and Electronic Systems3172014https://doi.org/10.4172/2332-0796.100012010.4172/2332-0796.1000120Search in Google Scholar

B. Greenebaum, F. Barnes, Bioengineering and Biophysical Aspects of Electromagnetic Fields (CRC/Taylor & Francis, Boca Raton, FL., 2007).GreenebaumB.Barnes, Bioengineering and Biophysical Aspects of Electromagnetic FieldsCRC/Taylor & FrancisBoca Raton, FL2007Search in Google Scholar

B. Commoner, J. Townsend, G.E. Pake, Free radicals in biological materials. Nature, 174, 689-691 (1954). https://doi.org/10.1038/174689a0CommonerB.TownsendJ.PakeG.E.Free radicals in biological materialsNature1746896911954https://doi.org/10.1038/174689a010.1038/174689a0Search in Google Scholar

V.N. Varfolomeev et al., Paramagnetic properties of hepatic tissues and transplantable hepatomas. Biofizika. 21, 881-886 (1976).VarfolomeevV.N.Paramagnetic properties of hepatic tissues and transplantable hepatomasBiofizika218818861976Search in Google Scholar

R. Pethig, D.B. Kell, The passive electrical properties of biological systems: their significance in physiology, biophysics and biotechnology. Physics in medicine and biology, 32, 933-970 (1987). https://doi.org/10.1088/0031-9155/32/8/001PethigR.KellD.B.The passive electrical properties of biological systems: their significance in physiology, biophysics and biotechnologyPhysics in medicine and biology329339701987https://doi.org/10.1088/0031-9155/32/8/00110.1088/0031-9155/32/8/001Search in Google Scholar

C. Kittel, Introduction to Solid State Physics (Wiley, New York, 2008).KittelC.Introduction to Solid State PhysicsWileyNew York2008Search in Google Scholar

W.T. Coffey, Y.P. Kalmykov, J.T. Waldron, The Langevin Equation, with Applications in Physics, Chemistry, and Electrical Engineering (World Scientific, River Edge, NJ, 1996).CoffeyW.T.KalmykovY.P.WaldronJ.T.The Langevin Equation, with Applications in Physics, Chemistry, and Electrical EngineeringWorld ScientificRiver Edge, NJ199610.1142/2256Search in Google Scholar

J. Koester, S.A. Siegelbaum, in Principles of Neural Science, E.R. Kandel, J.H. Schwartz, T.M. Jessell, Eds. (McGraw-Hill, New York, 2000), pp. 150-169.KoesterJ.SiegelbaumS.A.Principles of Neural ScienceKandelE.R.SchwartzJ.H.JessellT.M.McGraw-HillNew York2000150169Search in Google Scholar

A.F. Huxley, From overshoot to voltage clamp. Trends in Neurosciences, 25, 553-558 (2002). https://doi.org/10.1016/S0166-2236(02)02280-4HuxleyA.F.From overshoot to voltage clampTrends in Neurosciences255535582002https://doi.org/10.1016/S0166-2236(02)02280-410.1016/S0166-2236(02)02280-4Search in Google Scholar

E.O. Hernández-Ochoa, M.F. Schneider, Voltage clamp methods for the study of membrane currents and SR Ca2+ release in adult skeletal muscle fibres. Progress in Biophysics and Molecular Biology, 108, 98-118 (2012). https://doi.org/10.1016/j.pbiomolbio.2012.01.001Hernández-OchoaE.O.SchneiderM.F.Voltage clamp methods for the study of membrane currents and SR Ca2+ release in adult skeletal muscle fibresProgress in Biophysics and Molecular Biology108981182012https://doi.org/10.1016/j.pbiomolbio.2012.01.00110.1016/j.pbiomolbio.2012.01.001332111822306655Search in Google Scholar

S.G. Waxman, J.D. Kocsis, P.K. Stys, Eds., The Axon: Structure, Function and Pathophysiology (Oxford University Press, New York, 1995). https://doi.org/10.1093/acprof:oso/9780195082937.001.0001WaxmanS.G.KocsisJ.D.StysP.K.The Axon: Structure, Function and PathophysiologyOxford University PressNew York1995https://doi.org/10.1093/acprof:oso/9780195082937.001.000110.1093/acprof:oso/9780195082937.001.0001Search in Google Scholar

A.V. Holden, P.G. Haydon, W. Winlow, Multiple equilibria and exotic behavior in excitable membranes. Biological Cybernetics, 46, 167-172 (1983). https://doi.org/10.1007/BF00336798HoldenA.V.HaydonP.G.WinlowW.Multiple equilibria and exotic behavior in excitable membranesBiological Cybernetics461671721983https://doi.org/10.1007/BF0033679810.1007/BF003367986850003Search in Google Scholar

R. Guttman, S. Lewis, J. Rinzel, Control of repetitive firing in squid axon membrane as a model for a nuroneoscillator. Journal of Physiology, 305, 377-395 (1980). https://doi.org/10.1113/jphysiol.1980.sp013370GuttmanR.LewisS.RinzelJ.Control of repetitive firing in squid axon membrane as a model for a nuroneoscillatorJournal of Physiology3053773951980https://doi.org/10.1113/jphysiol.1980.sp01337010.1113/jphysiol.1980.sp01337012829797441560Search in Google Scholar

H.R. Leuchtag, Voltage-Sensitive Ion Channels: Biophysics of Molecular Excitability (Springer, New York, Philadelphia, 2008). https://doi.org/10.1007/978-1-4020-5525-6LeuchtagH.R.Voltage-Sensitive Ion Channels: Biophysics of Molecular ExcitabilitySpringerNew York, Philadelphia2008https://doi.org/10.1007/978-1-4020-5525-610.1007/978-1-4020-5525-6Search in Google Scholar

D.A. Hill, Electromagnetic Fields in Cavities: Deterministic and Statistical Theories (IEEE Press Series on Electromagnetic Wave Theory, NJ, 2009). https://doi.org/10.1002/9780470495056HillD.A.Electromagnetic Fields in Cavities: Deterministic and Statistical TheoriesIEEE Press Series on Electromagnetic Wave TheoryNJ2009https://doi.org/10.1002/978047049505610.1002/9780470495056Search in Google Scholar

D.A. McQuarrie, Mathematical Methods for Scientists and Engineers (University Science Books, CA, 2003).McQuarrieD.A.Mathematical Methods for Scientists and EngineersUniversity Science BooksCA2003Search in Google Scholar

R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane. Biophysical Journal, 1, 445-466 (1961). https://doi.org/10.1016/S0006-3495(61)86902-6FitzHughR.Impulses and physiological states in theoretical models of nerve membraneBiophysical Journal14454661961https://doi.org/10.1016/S0006-3495(61)86902-610.1016/S0006-3495(61)86902-6Search in Google Scholar

G. Zhao, Z. Hou, H. Xin, Frequency-selective response of FitzHugh-Nagumo neuron networks via changing random edges. Chaos: An Interdisciplinary Journal of Nonlinear Science, 16, 043107 (2006). https://doi.org/10.1063/1.2360503ZhaoG.HouZ.XinH.Frequency-selective response of FitzHugh-Nagumo neuron networks via changing random edgesChaos: An Interdisciplinary Journal of Nonlinear Science160431072006https://doi.org/10.1063/1.236050310.1063/1.2360503Search in Google Scholar

S.Y. Gordleeva, et al., Bi-directional astrocytic regulation of neuronal activity within a network. Frontiers in Computational Neuroscience, 6, 104-114 (2012). https://doi.org/10.3389/fncom.2012.00092GordleevaS.Y.Bi-directional astrocytic regulation of neuronal activity within a networkFrontiers in Computational Neuroscience61041142012https://doi.org/10.3389/fncom.2012.0009210.3389/fncom.2012.00092Search in Google Scholar

R.W. Aldrich, P.A. Getting, S.H. Thompson, Inactivation of delayed outward current in molluscan neurone somata. Journal of Physiology, 291, 507-530 (1979). https://doi.org/10.1113/jphysiol.1979.sp012828AldrichR.W.GettingP.A.ThompsonS.H.Inactivation of delayed outward current in molluscan neurone somataJournal of Physiology2915075301979https://doi.org/10.1113/jphysiol.1979.sp01282810.1113/jphysiol.1979.sp012828Search in Google Scholar

K. Aihara, G. Matsumoto, in Nerve Excitation and Chaos: Dynamical Systems and Nonlinear Oscillations, Gikō Ikegami, Ed. (World Scientific Publishing Co., 1986). Pp. 254-267.AiharaK.MatsumotoG.Nerve Excitation and Chaos: Dynamical Systems and Nonlinear OscillationsGikōIkegamiWorld Scientific Publishing Co1986254267Search in Google Scholar

J. Rinzel, G. Huguet, Nonlinear Dynamics of Neuronal Excitability, Oscillations, and Coincidence Direction. Communications on Pure and Applied Mathematics, 66(9), 1464-1494 (2013). https://doi.org/10.1002/cpa.21469RinzelJ.HuguetG.Nonlinear Dynamics of Neuronal Excitability, Oscillations, and Coincidence DirectionCommunications on Pure and Applied Mathematics669146414942013https://doi.org/10.1002/cpa.2146910.1002/cpa.21469Search in Google Scholar

Morris, H. Lecar, Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 35, 193-213 (1981). https://doi.org/10.1016/S0006-3495(81)84782-0MorrisHLecar, Voltage oscillations in the barnacle giant muscle fiberBiophysical Journal351932131981https://doi.org/10.1016/S0006-3495(81)84782-010.1016/S0006-3495(81)84782-0Search in Google Scholar

T. Sasaki, N. Matsuki, Y. Ikegaya, Action-potential modulation during axonal conduction. Science, 331, 599-601 (2011). https://doi.org/10.1126/science.1197598SasakiT.MatsukiN.IkegayaY.Action-potential modulation during axonal conductionScience3315996012011https://doi.org/10.1126/science.119759810.1126/science.1197598Search in Google Scholar

N.H. Sabah, K.N. Leibovic, The effect of membrane parameters on the properties of the nerve impulse. Biophysical Journal, 12, 1132-1144 (1972). https://doi.org/10.1016/S0006-3495(72)86150-2SabahN.H.LeibovicK.N.The effect of membrane parameters on the properties of the nerve impulseBiophysical Journal12113211441972https://doi.org/10.1016/S0006-3495(72)86150-210.1016/S0006-3495(72)86150-2Search in Google Scholar

N.F. Britton, Essential Mathematical Biology (Springer-Verlag, London, 2003). https://doi.org/10.1007/978-1-4471-0049-2BrittonN.F.Essential Mathematical BiologySpringer-VerlagLondon2003https://doi.org/10.1007/978-1-4471-0049-210.1007/978-1-4471-0049-2Search in Google Scholar

J.D. Murray, Mathematical Biology I: An Introduction (Springer-Verlag, Berlin, 2002).MurrayJ.D.Mathematical Biology I: An IntroductionSpringer-VerlagBerlin200210.1007/b98868Search in Google Scholar

E.O. Voit, A First Course in Systems Biology (Garland Science, Taylor & Francis, New York, 2013).VoitE.O.A First Course in Systems BiologyGarland ScienceTaylor & Francis, New York201310.1201/9780429258510Search in Google Scholar

R.L. Armstrong, J.D. King, The Electromagnetic Interaction (Prentice Hall, Englewood Cliffs, NJ, 1973).ArmstrongR.L.KingJ.D.The Electromagnetic InteractionPrentice HallEnglewood Cliffs, NJ1973Search in Google Scholar

G.B. Arfken, H.J. Weber, F.E. Harris, Mathematical Methods for Physicist: A Comprehensive Guide (Elsevier, MA, 2013).ArfkenG.B.WeberH.J.HarrisF.E.Mathematical Methods for Physicist: A Comprehensive GuideElsevierMA2013Search in Google Scholar

E. Weisstein, CRC Concise Encyclopedia of Mathematics (CRC Press, Boca Raton, 2003).WeissteinE.CRC Concise Encyclopedia of MathematicsCRC PressBoca Raton200310.1201/9781420035223Search in Google Scholar

The electrical system of the body: The physics of the nervous system (Medical Physics, University of Notre Dame, n.d., http://www3.nd.edu/~nsl/Lectures/mphysics/).The electrical system of the body: The physics of the nervous systemMedical Physics, University of Notre Dame, n.dhttp://www3.nd.edu/~nsl/Lectures/mphysics/)Search in Google Scholar

R.I. Macey, in Membrane Physiology, T.E. Andreoli, J.F. Hoffman, D.D. Fanestil, Eds. (Springer, New York, 1980), pp. 125-146. https://doi.org/10.1007/978-1-4757-1718-1_7MaceyR.I.Membrane PhysiologyAndreoliT.E.HoffmanJ.F.FanestilD.D.SpringerNew York1980125146https://doi.org/10.1007/978-1-4757-1718-1_710.1007/978-1-4757-1718-1_7Search in Google Scholar

T. Begenisic, Magnitude and location of surface charges on myxicola giant axons. The Journal of General Physiology, 66, 47-65 (1975). https://doi.org/10.1085/jgp.66.1.47BegenisicT.Magnitude and location of surface charges on myxicola giant axonsThe Journal of General Physiology6647651975https://doi.org/10.1085/jgp.66.1.4710.1085/jgp.66.1.4722261851159402Search in Google Scholar

J. Enderle, S. Blanchard, J. Bronzino, Introduction to Biomedical Engineering (Elsevier Academic Press, Amsterdam, Boston, London, New York, 2005).EnderleJ.BlanchardS.BronzinoJ.Introduction to Biomedical EngineeringElsevier Academic PressAmsterdam, Boston, London, New York2005Search in Google Scholar

P. Smejtek, in Permeability and Stability of Lipid Bilayers, E. Anibal Disalvo, S.A. Simon, Eds. (CRC Press, Boca Raton, Ann Arbor, London, 1994), pp. 197-236.SmejtekP.Permeability and Stability of Lipid BilayersAnibal DisalvoE.SimonS.A.CRC PressBoca Raton, Ann Arbor, London1994197236Search in Google Scholar