Cite

AOAC, 2000. Official Methods of Analysis of AOAC International (17th edition). Association of Official Analysis Chemists International, Methods No. 2-66, AOAC, Washington, DC.Search in Google Scholar

Bal U., Altintas S., 2006. Effects of Trichoderma harzianum on the yield and fruit quality of tomato plants (Lycopersicon esculentum) grown in an unheated greenhouse. Aust. J. Exp. Agr. 46(1), 131-136.10.1071/EA04003Search in Google Scholar

Barrett D.M., Anthon G.E., 2008. Color quality of tomato products. In: Color Quality of Fresh and Processed Foods. C.A. Culver and R.E. Wrolstad (Eds), American Chemical Society, Washington, DC, USA, 131-139.10.1021/bk-2008-0983.ch010Search in Google Scholar

Bertin N., Génard M., 2018. Tomato quality as influenced by preharvest factors. Sci. Hortic. 233, 264-276.10.1016/j.scienta.2018.01.056Search in Google Scholar

Biais B., Benard C., Beauvoit B., Colombi S., Prodhomme D., Menard G., et al., 2014. Remarkable reproducibility of enzyme activity profiles in tomato fruits grown under contrasting environments provides a roadmap for studies of fruit metabolism. Plant Physiol. 164(3), 1204-1221.10.1104/pp.113.231241393861424474652Search in Google Scholar

Causse M., 2002. QTL analysis of fruit quality in fresh market tomato: a few chromosome regions control the variation of sensory and instrumental traits. J. Exp. Bot. 53, 2089-2098.10.1093/jxb/erf05812324532Search in Google Scholar

Chen M., Jiang Q., Yin X.R., Lin Q., Chen J.Y., Allan A.C., et al., 2012. Effect of hot air treatment on organic acid- and sugar-metabolism in Ponkan (Citrus reticulata) fruit. Sci. Hortic. 147, 118-125.10.1016/j.scienta.2012.09.011Search in Google Scholar

Davies J.N., Hobson G.E., 1981. The constituents of tomato fruit – the influence of environment, nutrition, and genotype. Crit. Rev. Food Sci. Nutr. 15(3), 205-280.10.1080/104083981095273177030623Search in Google Scholar

Dumville J.C., Fry S.C., 2003. Solubilisation of tomato fruit pectins by ascorbate: a possible non-enzymic mechanism of fruit softening. Planta 217(6), 951-961.10.1007/s00425-003-1061-012838420Search in Google Scholar

FAOSTAT, 2015. Food and Agriculture Organization of the United Nations. Available online at www.fao.org/faostat/; cited on 15 Jun 2019.Search in Google Scholar

Figàs M.R., Prohens J., Raigón M.D., Fita A., García-Martínez M.D., Casanova C., et al., 2015. Characterization of composition traits related to organoleptic and functional quality for the differentiation, selection and enhancement of local varieties of tomato from different cultivar groups. Food Chem. 187, 517-524.10.1016/j.foodchem.2015.04.08325977058Search in Google Scholar

Gautier H., Diakou-Verdin V., Bénard C., Reich M., Buret M., Bourgaud F., et al., 2008. How does tomato quality (sugar, acid, and nutritional quality) vary with ripening stage, temperature, and irradiance? J. Agric. Food Chem. 56(4), 1241-1250.10.1021/jf072196t18237131Search in Google Scholar

Génard M., Memmah M.M., Quilot-Turion B., Vercambre G., Baldazzi V., Le Bot J., 2016. Process-based simulation models are essential tools for virtual profiling and design of ideotypes: Example of fruit and root. In: Crop Systems Biology. X. Yin and P. Struik (Eds), Springer, Cham, Switzerland, 83-104.10.1007/978-3-319-20562-5_4Search in Google Scholar

Heredia A., Barrera C., Andrés A., 2007. Drying of cherry tomato by a combination of different dehydration techniques. Comparison of kinetics and other related properties. J. Food Eng. 80(1), 111-118.10.1016/j.jfoodeng.2006.04.056Search in Google Scholar

Heuvelink E., 2018. Tomatoes. CABI, Boston, MA, USA.10.1079/9781780641935.0000Search in Google Scholar

Illera A.E., Sanz M.T., Trigueros E., Beltrán S., Melgosa R., 2018. Effect of high pressure carbon dioxide on tomato juice: Inactivation kinetics of pectin methylesterase and polygalacturonase and determination of other quality parameters. J. Food Eng. 239, 64-71.10.1016/j.jfoodeng.2018.06.027Search in Google Scholar

InfoStat, 2018. Statistical Software. Available online at www.infostat.com.ar; cited on 28 Sep 2019.Search in Google Scholar

Jones R.A., Scott S.J., 1983. Improvement of tomato flavor by genetically increasing sugar and acid contents. Euphytica 32(3), 845-855.10.1007/BF00042166Search in Google Scholar

Keswani C., Mishra S., Sarma B.K., Singh S.P., Singh H.B., 2014. Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Appl. Microbiol. Biotechnol. 98(2), 533-544.10.1007/s00253-013-5344-5Search in Google Scholar

Klunklin W., Savage G., 2017. Effect on quality characteristics of tomatoes grown under well-watered and drought stress conditions. Foods 6, 56.10.3390/foods6080056Search in Google Scholar

López-Bucio J., Pelagio-Flores R., Herrera-Estrella A., 2015. Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Sci. Hortic. 196, 109-123.10.1016/j.scienta.2015.08.043Search in Google Scholar

Merchán-Gaitán J.V., Ferrucho R.L., Álvarez-Herrera J.G., 2014. Effect of two Trichoderma strains on Botrytis cinerea control and fruit quality for the strawberry (Fragaria sp.). Rev. Colomb. Cienc. Hortic. 8(1), 44-56.10.17584/rcch.2014v8i1.2799Search in Google Scholar

Mohamed S.A., Christensen T.M.I.E., Mikkelsen J.D., 2003. New polygalacturonases from Trichoderma reesei: characterization and their specificities to partially methylated and acetylated pectins. Carbohydr. Res. 338(6), 515-524.10.1016/S0008-6215(02)00398-1Search in Google Scholar

Molla A.H., Manjurul Haque M., Amdadul Haque M., Ilias G.N.M., 2012. Trichoderma-enriched biofertilizer enhances production and nutritional quality of tomato (Lycopersicon esculentum Mill.) and minimizes NPK fertilizer use. Agric. Res. 1(3), 265-272.10.1007/s40003-012-0025-7Search in Google Scholar

Nzanza B., Marais D., Soundy P., 2012. Response of tomato (Solanum lycopersicum L.) to nursery inoculation with Trichoderma harzianum and arbuscular mycorrhizal fungi under field conditions. Acta Agric. Scand. B Soil Plant Sci. 62(3), 209-215.10.1080/09064710.2011.598544Search in Google Scholar

Oltman A.E., Jervis S.M., Drake M.A., 2014. Consumer attitudes and preferences for fresh market tomatoes. J. Food Sci. 79(10), S2091-S2097.10.1111/1750-3841.1263825219281Search in Google Scholar

Palaniappan S., Sastry S.K., 1991. Electrical conductivity of selected juices: influences of temperature, solids content, applied voltage, and particle size. J. Food Process Eng. 14(4), 247-260.10.1111/j.1745-4530.1991.tb00135.xSearch in Google Scholar

Pascale A., Vinale F., Manganiello G., Nigro M., Lanzuise S., Ruocco M., et al., 2017. Trichoderma and its secondary metabolites improve yield and quality of grapes. Crop Prot. 92, 176-181.10.1016/j.cropro.2016.11.010Search in Google Scholar

Ruiz-Cisneros M.F., Ornelas-Paz J.D.J., Olivas-Orozco G.I., Acosta-Muñiz C.H., Sepúlveda-Ahumada D.R., Pérez-Corral D.A., et al., 2018. Effect of Trichoderma spp. and phytopathogenic fungi on plant growth and tomato fruit quality. Mex. J. Phytopathol. 36, 444-456.10.18781/R.MEX.FIT.1804-5Search in Google Scholar

Shoresh M., Harman G.E., 2008. The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: a proteomic approach. Plant Physiol. 147(4), 2147-2163.10.1104/pp.108.123810249261218562766Search in Google Scholar

Steiner A.A., 1961. A universal method for preparing nutrient solutions of a certain desired composition. Plant Soil 15(2), 134-154.10.1007/BF01347224Search in Google Scholar

Thompson K.A., Marshall M.R., Sims C.A., Wei C.I., Sargent S.A., Scott J.W., 2000. Cultivar, maturity, and heat treatment on lycopene content in tomatoes. J. Food Sci. 65(5), 791-795.10.1111/j.1365-2621.2000.tb13588.xSearch in Google Scholar

Tigist M., Workneh T.S., Woldetsadik K., 2013. Effects of variety on the quality of tomato stored under ambient conditions. J. Food Sci. Technol. 50(3), 477-486.10.1007/s13197-011-0378-0360255024425942Search in Google Scholar

USDA, 1991. United States Standards for Grades of Fresh Tomatoes. Available from: www.ams.usda.gov/sites/default/files/media/Tomato_Standard%5B1%5D.pdf; cited on 21 Jun 2019.Search in Google Scholar

Valero D., Serrano M., 2010. Postharvest Biology and Technology for Preserving Fruit Quality. CRC Press, Boca Raton, FL, USA.10.1201/9781439802670Search in Google Scholar

White P.J., 2002. Recent advances in fruit development and ripening: an overview. J. Exp. Bot. 53(377), 1995-2000.10.1093/jxb/erf10512324524Search in Google Scholar

Winsor G.W., Davies J.N., Massey D.M., 1962. Composition of tomato fruit. III.– Juices from whole fruit and locules at different stages of ripeness. J. Sci. Food Agric. 13(2), 108-115.10.1002/jsfa.2740130209Search in Google Scholar

Wormit A., Usadel B., 2018. The multifaceted role of pectin methylesterase inhibitors (PMEIs). Int. J. Mol. Sci. 19(10), 1-19.10.3390/ijms19102878621351030248977Search in Google Scholar

eISSN:
2083-5965
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Life Sciences, Plant Science, Zoology, Ecology, other