Cite

Wulf M-A, Senatore A, Aguzzi A. The biological function of the cellular prion protein: an update. BMC Biol [Internet]. BioMed Central; 2017 [cited 2019 Feb 13];15(1):34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28464931WulfM-ASenatoreAAguzziAThe biological function of the cellular prion protein: an updateBMC Biol [Internet]. BioMed Central;2017[cited 2019 Feb 13];15134Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/2846493110.1186/s12915-017-0375-5541205428464931Search in Google Scholar

Panegyres P, Burchell JT. Prion diseases: immunotargets and therapy. ImmunoTargets Ther [Internet]. 2016 Jun [cited 2019 Apr 8];5:57. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27529062PanegyresPBurchellJTPrion diseases: immunotargets and therapyImmunoTargets Ther [Internet]2016Jun [cited 2019 Apr 8];557Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/2752906210.2147/ITT.S64795497064027529062Search in Google Scholar

Walter E, Spevacek A, Visconte M, Rossi A, Millhauser G, Stevens D. Copper Binding Extrinsic to the Octarepeat Region in the Prion Protein. Curr Protein Pept Sci [Internet]. 2009 Oct [cited 2019 Feb 18];10(5):529–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19538144WalterESpevacekAVisconteMRossiAMillhauserGStevensDCopper Binding Extrinsic to the Octarepeat Region in the Prion ProteinCurr Protein Pept Sci [Internet]2009Oct [cited 2019 Feb 18];10552935Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/1953814410.2174/138920309789352056290514019538144Search in Google Scholar

Schmitt-Ulms G, Ehsani S, Watts JC, Westaway D, Wille H. Evolutionary descent of prion genes from the ZIP family of metal Ion transporters. Poon AFY, editor. PLoS One [Internet]. 2009 Sep 28 [cited 2019 Feb 18];4(9):e7208. Available from: https://dx.plos.org/10.1371/journal.pone.0007208Schmitt-UlmsGEhsaniSWattsJCWestawayDWilleHEvolutionary descent of prion genes from the ZIP family of metal Ion transportersPoon AFY, editor. PLoS One [Internet]2009Sep 28 [cited 2019 Feb 18];49e7208Available fromhttps://dx.plos.org/10.1371/journal.pone.000720810.1371/journal.pone.0007208274575419784368Search in Google Scholar

Naslavsky N, Stein R, Yanai A, Friedlander G, Taraboulos A. Characterization of detergent-insoluble complexes containing the cellular prion protein and its scrapie isoform. J Biol Chem [Internet]. 1997 Mar 7 [cited 2019 Mar 11];272(10):6324–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9045652NaslavskyNSteinRYanaiAFriedlanderGTaraboulosACharacterization of detergent-insoluble complexes containing the cellular prion protein and its scrapie isoformJ Biol Chem [Internet]1997Mar 7 [cited 2019 Mar 11];27210632431Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/904565210.1074/jbc.272.10.63249045652Search in Google Scholar

Zahn R, Liu A, Lührs T, Riek R, von Schroetter C, López García F, et al. NMR solution structure of the human prion protein. Proc Natl Acad Sci U S A [Internet]. 2000 Jan 4 [cited 2019 Mar 11];97(1):145–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10618385ZahnRLiuALührsTRiekRvon SchroetterCLópezGarcía Fet alNMR solution structure of the human prion proteinProc Natl Acad Sci U S A [Internet]2000Jan 4 [cited 2019 Mar 11];97114550Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/1061838510.1073/pnas.97.1.1452663010618385Search in Google Scholar

Lawson VA, Collins SJ, Masters CL, Hill AF. Prion protein glycosylation [Internet]. Vol. 93, Journal of Neurochemistry. 2005 [cited 2019 Mar 11]. p. 793–801. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15857383LawsonVACollinsSJMastersCLHillAFPrion protein glycosylation [Internet]Vol. 93, Journal of Neurochemistry2005[cited 2019 Mar 11]. p793801Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/1585738310.1111/j.1471-4159.2005.03104.x15857383Search in Google Scholar

Sarnataro D, Pepe A, Altamura G, De Simone I, Pesapane A, Nitsch L, et al. The 37/67 kDa laminin receptor (LR) inhibitor, NSC47924, affects 37/67 kDa LR cell surface localization and interaction with the cellular prion protein. Sci Rep [Internet]. 2016 Apr 13 [cited 2019 Mar 22];6(1):24457. Available from: http://www.nature.com/articles/srep24457SarnataroDPepeAAltamuraGDe SimoneIPesapaneANitschLet alThe 37/67 kDa laminin receptor (LR) inhibitor, NSC47924, affects 37/67 kDa LR cell surface localization and interaction with the cellular prion proteinSci Rep [Internet]2016Apr 13 [cited 2019 Mar 22];6124457Available fromhttp://www.nature.com/articles/srep2445710.1038/srep24457482989727071549Search in Google Scholar

Haigh CL, Edwards K, Brown DR. Copper binding is the governing determinant of prion protein turnover. Mol Cell Neurosci [Internet]. 2005 Oct [cited 2019 Mar 22];30(2):186–96. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1044743105001478HaighCLEdwardsKBrownDRCopper binding is the governing determinant of prion protein turnoverMol Cell Neurosci [Internet]2005Oct [cited 2019 Mar 22];30218696Available fromhttps://linkinghub.elsevier.com/retrieve/pii/S104474310500147810.1016/j.mcn.2005.07.00116084105Search in Google Scholar

Taylor DR. Assigning functions to distinct regions of the N-terminus of the prion protein that are involved in its copper-stimulated, clathrin-dependent endocytosis. J Cell Sci [Internet]. 2005 Nov 1 [cited 2019 Mar 11];118(21):5141–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16254249TaylorDRAssigning functions to distinct regions of the N-terminus of the prion protein that are involved in its copper-stimulated, clathrin-dependent endocytosisJ Cell Sci [Internet]2005Nov 1 [cited 2019 Mar 11];11821514153Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/1625424910.1242/jcs.0262716254249Search in Google Scholar

Ren K, Wang S-B, Chen C, Dong X-P, Sun H, Gao C, et al. PrP octarepeats region determined the interaction with caveolin-1 and phosphorylation of caveolin-1 and Fyn. Med Microbiol Immunol [Internet]. 2013 Jun 3 [cited 2019 Mar 11];202(3):215–27. Available from: http://link.springer.com/10.1007/s00430-012-0284-8RenKWangS-BChenCDongX-PSunHGaoCet alPrP octarepeats region determined the interaction with caveolin-1 and phosphorylation of caveolin-1 and FynMed Microbiol Immunol [Internet]2013Jun 3 [cited 2019 Mar 11];202321527Available fromhttp://link.springer.com/10.1007/s00430-012-0284-810.1007/s00430-012-0284-823283514Search in Google Scholar

Cheng F, Lindqvist J, Haigh CL, Brown DR, Mani K. Copper-dependent co-internalization of the prion protein and glypican-1. J Neurochem [Internet]. 2006 Sep [cited 2019 Mar 11];98(5):1445–57. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16923158ChengFLindqvistJHaighCLBrownDRManiKCopper-dependent co-internalization of the prion protein and glypican-1J Neurochem [Internet]2006Sep [cited 2019 Mar 11];985144557Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/1692315810.1111/j.1471-4159.2006.03981.x16923158Search in Google Scholar

Castle AR, Gill AC. Physiological Functions of the Cellular Prion Protein. Front Mol Biosci [Internet]. 2017;4(April):1–25. Available from: http://journal.frontiersin.org/article/10.3389/fmolb.2017.00019/fullCastleARGillACPhysiological Functions of the Cellular Prion ProteinFront Mol Biosci [Internet]20174April125Available fromhttp://journal.frontiersin.org/article/10.3389/fmolb.2017.00019/full10.3389/fmolb.2017.00019538217428428956Search in Google Scholar

D’Ambrosi N, Rossi L. Copper at synapse: Release, binding and modulation of neurotransmission. Neurochem Int [Internet]. 2015 Nov [cited 2019 Feb 14];90:36–45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26187063D’AmbrosiNRossiLCopper at synapse: Release, binding and modulation of neurotransmissionNeurochem Int [Internet]2015Nov [cited 2019 Feb 14];903645Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/2618706310.1016/j.neuint.2015.07.00626187063Search in Google Scholar

Urso E, Manno D, Serra A, Buccolieri A, Rizzello A, Danieli A, et al. Role of the cellular prion protein in the neuron adaptation strategy to copper deficiency. Cell Mol Neurobiol [Internet]. 2012 Aug 24 [cited 2019 Mar 11];32(6):989–1001. Available from: http://link.springer.com/10.1007/s10571-012-9815-5UrsoEMannoDSerraABuccolieriARizzelloADanieliAet alRole of the cellular prion protein in the neuron adaptation strategy to copper deficiencyCell Mol Neurobiol [Internet]2012Aug 24 [cited 2019 Mar 11];3269891001Available fromhttp://link.springer.com/10.1007/s10571-012-9815-510.1007/s10571-012-9815-522362149Search in Google Scholar

Hornshaw MP, McDermott JR, Candy JM, Lakey JH. Copper binding to the N-terminal tandem repeat region of mammalian and avian prion protein: structural studies using synthetic peptides. Biochem Biophys Res Commun [Internet]. 1995 Sep 25 [cited 2019 Mar 22];214(3):993–9. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0006291X85723844HornshawMPMcDermottJRCandyJMLakeyJHCopper binding to the N-terminal tandem repeat region of mammalian and avian prion protein: structural studies using synthetic peptidesBiochem Biophys Res Commun [Internet]1995Sep 25 [cited 2019 Mar 22];21439939Available fromhttp://linkinghub.elsevier.com/retrieve/pii/S0006291X8572384410.1006/bbrc.1995.23847575574Search in Google Scholar

Hornshaw MP, McDermott JR, Candy JM. Copper binding to the N-terminal tandem repeat regions of mammalian and avian prion protein. Biochem Biophys Res Commun [Internet]. 1995 Feb 15 [cited 2019 Mar 22];207(2):621–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7864852HornshawMPMcDermottJRCandyJMCopper binding to the N-terminal tandem repeat regions of mammalian and avian prion proteinBiochem Biophys Res Commun [Internet]1995Feb 15 [cited 2019 Mar 22];20726219Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/786485210.1006/bbrc.1995.12337864852Search in Google Scholar

Burns CS, Aronoff-Spencer E, Legname G, Prusiner SB, Antholine WE, Gerfen GJ, et al. Copper coordination in the full-length, recombinant prion protein. Biochemistry [Internet]. 2003 Jun 10 [cited 2019 Mar 22];42(22):6794–803. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12779334BurnsCSAronoff-SpencerELegnameGPrusinerSBAntholineWEGerfenGJet alCopper coordination in the full-length, recombinant prion proteinBiochemistry [Internet]2003Jun 10 [cited 2019 Mar 22];42226794803Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/1277933410.1021/bi027138+290514512779334Search in Google Scholar

Jones S, Batchelor M, Bhelt D, Clarke AR, Collinge J, Jackson GS. Recombinant prion protein does not possess SOD-1 activity. Biochem J [Internet]. Portland Press Ltd; 2005 Dec 1 [cited 2019 Mar 25];392(Pt 2):309–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16156720JonesSBatchelorMBheltDClarkeARCollingeJJacksonGSRecombinant prion protein does not possess SOD-1 activityBiochem J [Internet]. Portland Press Ltd;2005Dec 1 [cited 2019 Mar 25];392Pt 230912Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/1615672010.1042/BJ20051236131626616156720Search in Google Scholar

Brown DR, Qin K, Herms JW, Madlung A, Manson J, Strome R, et al. The cellular prion protein binds copper in vivo. Nature [Internet]. Nature Publishing Group; 1997 Dec 18 [cited 2019 Feb 14];390(6661):684–7. Available from: http://www.nature.com/articles/37783BrownDRQinKHermsJWMadlungAMansonJStromeRet alThe cellular prion protein binds copper in vivoNature [Internet]. Nature Publishing Group;1997Dec 18 [cited 2019 Feb 14];39066616847Available fromhttp://www.nature.com/articles/3778310.1038/377839414160Search in Google Scholar

Brown LR, Harris DA. Copper and zinc cause delivery of the prion protein from the plasma membrane to a subset of early endosomes and the Golgi. J Neurochem [Internet]. 2003 Oct [cited 2019 Mar 25];87(2):353–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14511113BrownLRHarrisDACopper and zinc cause delivery of the prion protein from the plasma membrane to a subset of early endosomes and the GolgiJ Neurochem [Internet]2003Oct [cited 2019 Mar 25];87235363Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/1451111310.1046/j.1471-4159.2003.01996.xSearch in Google Scholar

Sánchez-López C, Rossetti G, Quintanar L, Carloni P. Structural Determinants of the Prion Protein N-Terminus and Its Adducts with Copper Ions. Int J Mol Sci [Internet]. 2018 Dec 20 [cited 2019 Mar 22];20(1):18. Available from: http://www.mdpi.com/1422-0067/20/1/18Sánchez-LópezCRossettiGQuintanarLCarloniPStructural Determinants of the Prion Protein N-Terminus and Its Adducts with Copper IonsInt J Mol Sci [Internet]2018Dec 20 [cited 2019 Mar 22];20118Available fromhttp://www.mdpi.com/1422-0067/20/1/1810.3390/ijms20010018Search in Google Scholar

Giese A, Buchholz M, Herms J, Kretzschmar HA. Mouse brain synaptosomes accumulate copper-67 efficiently by two distinct processes independent of cellular prion protein. J Mol Neurosci [Internet]. 2005 [cited 2019 Mar 22];27(3):347–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16280605GieseABuchholzMHermsJKretzschmarHAMouse brain synaptosomes accumulate copper-67 efficiently by two distinct processes independent of cellular prion proteinJ Mol Neurosci [Internet]2005[cited 2019 Mar 22];27334754Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/1628060510.1385/JMN:27:3:347Search in Google Scholar

Zatta P, Frank A. Copper deficiency and neurological disorders in man and animals [Internet]. Vol. 54, Brain Research Reviews. 2007 [cited 2019 Mar 22]. p. 19–33. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0165017306001147ZattaPFrankACopper deficiency and neurological disorders in man and animals [Internet]Vol. 54, Brain Research Reviews2007[cited 2019 Mar 22]. p1933Available fromhttps://linkinghub.elsevier.com/retrieve/pii/S016501730600114710.1016/j.brainresrev.2006.10.001Search in Google Scholar

Schlief ML, Gitlin JD. Copper Homeostasis in the CNS: A Novel Link Between the NMDA Receptor and Copper Homeostasis in the Hippocampus. Mol Neurobiol [Internet]. 2006 Apr [cited 2019 Mar 22];33(2):81–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16603790SchliefMLGitlinJDCopper Homeostasis in the CNS: A Novel Link Between the NMDA Receptor and Copper Homeostasis in the HippocampusMol Neurobiol [Internet]2006Apr [cited 2019 Mar 22];3328190Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/1660379010.1385/MN:33:2:81Search in Google Scholar

Leah Harris Z, Gitlin JD. Genetic and molecular basis for copper toxicity [Internet]. Vol. 63, American Journal of Clinical Nutrition. 1996 [cited 2019 Mar 20]. p. 836–77. Available from: https://academic.oup.com/ajcn/article-abstract/63/5/836S/4651493LeahHarris ZGitlinJDGenetic and molecular basis for copper toxicity [Internet]Vol. 63, American Journal of Clinical Nutrition1996[cited 2019 Mar 20]. p83677Available fromhttps://academic.oup.com/ajcn/article-abstract/63/5/836S/465149310.1093/ajcn/63.5.8368615371Search in Google Scholar

Hwang HS, Park SH, Park YW, Kwon HS, Sohn IS. Expression of cellular prion protein in the placentas of women with normal and preeclamptic pregnancies. Acta Obstet Gynecol Scand [Internet]. John Wiley & Sons, Ltd (10.1111); 2010 Sep 1 [cited 2019 Mar 25];89(9):1155–61. Available from: http://doi.wiley.com/10.3109/00016349.2010.498497HwangHSParkSHParkYWKwonHSSohnISExpression of cellular prion protein in the placentas of women with normal and preeclamptic pregnanciesActa Obstet Gynecol Scand [Internet]. John Wiley & Sons, Ltd (10.1111);2010Sep 1 [cited 2019 Mar 25];899115561Available fromhttp://doi.wiley.com/10.3109/00016349.2010.49849710.3109/00016349.2010.49849720804341Search in Google Scholar

Caniggia I, Winter J, Lye SJ, Post M. Oxygen and placental development during the first trimester: Implications for the pathophysiology of pre-eclampsia. Placenta [Internet]. W.B. Saunders; 2000 Mar 1 [cited 2019 Mar 21];21(SUPPL.1):S25–30. Available from: https://www.sciencedirect.com/science/article/pii/S0143400499905222?via%3DihubCaniggiaIWinterJLyeSJPostMOxygen and placental development during the first trimester: Implications for the pathophysiology of pre-eclampsia Placenta [Internet]. W.BSaunders;2000Mar 1 [cited 2019 Mar 21];21SUPPL.1S2530Available fromhttps://www.sciencedirect.com/science/article/pii/S0143400499905222?via%3Dihub10.1053/plac.1999.052210831118Search in Google Scholar

Donadio S, Alfaidy N, De Keukeleire B, Micoud J, Feige JJ, Challis JRG, et al. Expression and localization of cellular prion and COMMD1 proteins in human placenta throughout pregnancy. Placenta [Internet]. 2007 Aug [cited 2019 Mar 22];28(8–9):907–11. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0143400406002761DonadioSAlfaidyNDe KeukeleireBMicoudJFeigeJJChallisJRGet alExpression and localization of cellular prion and COMMD1 proteins in human placenta throughout pregnancyPlacenta [Internet]2007Aug [cited 2019 Mar 22];288–990711Available fromhttps://linkinghub.elsevier.com/retrieve/pii/S014340040600276110.1016/j.placenta.2006.11.00617254632Search in Google Scholar

Jeong JK, Seo JS, Moon MH, Lee YJ, Seol JW, Park SY. Hypoxia-inducible factor-1 alpha regulates prion protein expression to protect against neuron cell damage. Neurobiol Aging [Internet]. Elsevier; 2012 May 1 [cited 2019 Mar 21];33(5):1006.e1-1006.e10. Available from: https://www.sciencedirect.com/science/article/pii/S0197458011003915?via%3DihubJeongJKSeoJSMoonMHLeeYJSeolJWParkSYHypoxia-inducible factor-1 alpha regulates prion protein expression to protect against neuron cell damageNeurobiol Aging [Internet]. Elsevier;2012May 1 [cited 2019 Mar 21];3351006e1-1006.e10. Available fromhttps://www.sciencedirect.com/science/article/pii/S0197458011003915?via%3Dihub10.1016/j.neurobiolaging.2011.09.03722036844Search in Google Scholar

Liang J, Bai F, Luo G, Wang J, Liu J, Ge F, et al. Hypoxia induced overexpression of PrP(C) in gastric cancer cell lines. Cancer Biol Ther [Internet]. 2007 May [cited 2019 Mar 22];6(5):769–74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17387271LiangJBaiFLuoGWangJLiuJGeFet alHypoxia induced overexpression of PrP(C) in gastric cancer cell linesCancer Biol Ther [Internet]2007May [cited 2019 Mar 22];6576974Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/1738727110.4161/cbt.6.5.400117387271Search in Google Scholar

Seo J-S, Seol J-W, Moon M-H, Jeong J-K, Lee Y-J, Park S-Y. Hypoxia protects neuronal cells from human prion protein fragment-induced apoptosis. J Neurochem [Internet]. John Wiley & Sons, Ltd (10.1111); 2010 Feb 1 [cited 2019 Mar 21];112(3):715–22. Available from: http://doi.wiley.com/10.1111/j.1471-4159.2009.06496.xSeoJ-SSeolJ-WMoonM-HJeongJ-KLeeY-JParkS-YHypoxia protects neuronal cells from human prion protein fragment-induced apoptosisJ Neurochem [Internet]. John Wiley & Sons, Ltd (10.1111);2010Feb 1 [cited 2019 Mar 21];112371522Available fromhttp://doi.wiley.com/10.1111/j.1471-4159.2009.06496.x10.1111/j.1471-4159.2009.06496.x19919574Search in Google Scholar

Jeong JK, Park SY. Transcriptional regulation of specific protein 1 (SP1) by hypoxia-inducible factor 1 alpha (HIF-1α) leads to PRNP expression and neuroprotection from toxic prion peptide. Biochem Biophys Res Commun [Internet]. 2012 Dec 7 [cited 2019 Mar 22];429(1–2):93–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23131565JeongJKParkSYTranscriptional regulation of specific protein 1 (SP1) by hypoxia-inducible factor 1 alpha (HIF-1α) leads to PRNP expression and neuroprotection from toxic prion peptideBiochem Biophys Res Commun [Internet]2012Dec 7 [cited 2019 Mar 22];4291–2938Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/2313156510.1016/j.bbrc.2012.10.08623131565Search in Google Scholar

Simák J, Holada K, D’Agnillo F, Janota J, Vostal JG. Cellular prion protein is expressed on endothelial cells and is released during apoptosis on membrane microparticles found in human plasma. Transfusion [Internet]. John Wiley & Sons, Ltd (10.1111); 2002 Mar 1 [cited 2019 Mar 21];42(3):334–42. Available from: http://doi.wiley.com/10.1046/j.1537-2995.2002.00072.xSimákJHoladaKD’AgnilloFJanotaJVostalJGCellular prion protein is expressed on endothelial cells and is released during apoptosis on membrane microparticles found in human plasmaTransfusion [Internet]. John Wiley & Sons, Ltd (10.1111);2002Mar 1 [cited 2019 Mar 21];42333442Available fromhttp://doi.wiley.com/10.1046/j.1537-2995.2002.00072.x10.1046/j.1537-2995.2002.00072.x11961239Search in Google Scholar

Starke R, Drummond O, MacGregor I, Biggerstaff J, Gale R, Camilleri R, et al. The expression of prion protein by endothelial cells: a source of the plasma form of prion protein? Br J Haematol [Internet]. John Wiley & Sons, Ltd (10.1111); 2002 Dec 1 [cited 2019 Mar 21];119(3):863–73. Available from: http://doi.wiley.com/10.1046/j.1365-2141.2002.03847.xStarkeRDrummondOMacGregorIBiggerstaffJGaleRCamilleriRet alThe expression of prion protein by endothelial cells: a source of the plasma form of prion protein? Br J Haematol [Internet]John Wiley & Sons, Ltd (10.1111);2002Dec 1 [cited 2019 Mar 21];119386373Available fromhttp://doi.wiley.com/10.1046/j.1365-2141.2002.03847.x10.1046/j.1365-2141.2002.03847.x12437673Search in Google Scholar

Couraud P-O, Perriere N, Chaverot N, Enslen H, Cazaubon S, Viegas P. Junctional expression of the prion protein PrPC by brain endothelial cells: a role in trans-endothelial migration of human monocytes. J Cell Sci [Internet]. 2006 Nov 15 [cited 2019 Mar 22];119(22):4634–43. Available from: http://jcs.biologists.org/cgi/doi/10.1242/jcs.03222CouraudP-OPerriereNChaverotNEnslenHCazaubonSViegasPJunctional expression of the prion protein PrPC by brain endothelial cells: a role in trans-endothelial migration of human monocytesJ Cell Sci [Internet]2006Nov 15 [cited 2019 Mar 22];11922463443Available fromhttp://jcs.biologists.org/cgi/doi/10.1242/jcs.0322210.1242/jcs.0322217062642Search in Google Scholar

Schulze T, Follet J, Bailly Y, Lemaire-Vieille C, Cesbron J-Y, Heinen E, et al. Epithelial and endothelial expression of the green fluorescent protein reporter gene under the control of bovine prion protein (PrP) gene regulatory sequences in transgenic mice. Proc Natl Acad Sci [Internet]. 2002 May 9 [cited 2019 Mar 22];97(10):5422–7. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.080081197SchulzeTFolletJBaillyYLemaire-VieilleCCesbronJ-YHeinenEet alEpithelial and endothelial expression of the green fluorescent protein reporter gene under the control of bovine prion protein (PrP) gene regulatory sequences in transgenic miceProc Natl Acad Sci [Internet]2002May 9 [cited 2019 Mar 22];971054227Available fromhttp://www.pnas.org/cgi/doi/10.1073/pnas.08008119710.1073/pnas.0800811972584410792029Search in Google Scholar

Singh SK, Sinha P, Mishra L, Srikrishna S. Neuroprotective Role of a Novel Copper Chelator against A β 42 Induced Neurotoxicity. Int J Alzheimers Dis [Internet]. 2013 [cited 2019 Mar 22];2013:1–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24159420SinghSKSinhaPMishraLSrikrishnaSNeuroprotective Role of a Novel Copper Chelator against A β 42 Induced NeurotoxicityInt J Alzheimers Dis [Internet]2013[cited 2019 Mar 22];201319Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/2415942010.1155/2013/567128378949224159420Search in Google Scholar

Urso E, Maffia M. Behind the Link between Copper and Angiogenesis: Established Mechanisms and an Overview on the Role of Vascular Copper Transport Systems [Internet]. Vol. 52, Journal of Vascular Research. 2015 [cited 2019 Feb 18]. p. 172–96. Available from: https://www.karger.com/Article/FullText/438485UrsoEMaffiaMBehind the Link between Copper and Angiogenesis: Established Mechanisms and an Overview on the Role of Vascular Copper Transport Systems [Internet]Vol. 52, Journal of Vascular Research2015[cited 2019 Feb 18]. p17296Available fromhttps://www.karger.com/Article/FullText/43848510.1159/00043848526484858Search in Google Scholar

Zlokovic B V. The Blood-Brain Barrier in Health and Chronic Neurodegenerative Disorders. Neuron [Internet]. 2008 Jan 24 [cited 2019 Mar 21];57(2):178–201. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18215617ZlokovicB VThe Blood-Brain Barrier in Health and Chronic Neurodegenerative DisordersNeuron [Internet]2008Jan 24 [cited 2019 Mar 21];572178201Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/1821561710.1016/j.neuron.2008.01.00318215617Search in Google Scholar

Guo S, Lo EH. Dysfunctional Cell-Cell Signaling in the Neurovascular Unit as a Paradigm for Central Nervous System Disease. Stroke [Internet]. 2009 Mar 1 [cited 2019 Mar 21];40(3, Supplement 1):S4–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19064781GuoSLoEHDysfunctional Cell-Cell Signaling in the Neurovascular Unit as a Paradigm for Central Nervous System DiseaseStroke [Internet]2009Mar 1 [cited 2019 Mar 21];403, Supplement 1S47Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/1906478110.1161/STROKEAHA.108.534388Search in Google Scholar

Nelson SK, Huang CJ, Mathias MM, Allen KGD. Copper-marginal and copper-deficient diets decrease aortic prostacyclin production and copper-dependent superoxide dismutase activity, and increase aortic lipid peroxidation in rats. J Nutr [Internet]. 1992 Nov 1 [cited 2019 Mar 22];122(11):2101–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1432251NelsonSKHuangCJMathiasMMAllenKGDCopper-marginal and copper-deficient diets decrease aortic prostacyclin production and copper-dependent superoxide dismutase activity, and increase aortic lipid peroxidation in ratsJ Nutr [Internet]1992Nov 1 [cited 2019 Mar 22];1221121018Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/143225110.1093/jn/122.11.2101Search in Google Scholar

Tanaka KI, Kawahara M. Copper enhances zinc-induced neurotoxicity and the endoplasmic reticulum stress response in a neuronal model of vascular dementia. Front Neurosci [Internet]. Frontiers; 2017 Feb 9 [cited 2019 Mar 20];11(FEB):58. Available from: http://journal.frontiersin.org/article/10.3389/fnins.2017.00058/fullTanakaKIKawaharaMCopper enhances zinc-induced neurotoxicity and the endoplasmic reticulum stress response in a neuronal model of vascular dementiaFront Neurosci [Internet]. Frontiers;2017Feb 9 [cited 2019 Mar 20];11FEB58Available fromhttp://journal.frontiersin.org/article/10.3389/fnins.2017.00058/full10.3389/fnins.2017.00058Search in Google Scholar

Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods [Internet]. 1983 Dec 16 [cited 2019 Mar 22];65(1–2):55–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6606682MosmannTRapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assaysJ Immunol Methods [Internet]1983Dec 16 [cited 2019 Mar 22];651–25563Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/660668210.1016/0022-1759(83)90303-4Search in Google Scholar

Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res [Internet]. 2001 May 1 [cited 2019 Mar 22];29(9):e45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11328886PfafflMWA new mathematical model for relative quantification in real-time RT-PCRNucleic Acids Res [Internet]2001May 1 [cited 2019 Mar 22];299e45Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/1132888610.1093/nar/29.9.e455569511328886Search in Google Scholar

Foty R. A Simple Hanging Drop Cell Culture Protocol for Generation of 3D Spheroids. J Vis Exp [Internet]. 2011 May 6 [cited 2019 Mar 22];(51). Available from: http://www.ncbi.nlm.nih.gov/pubmed/21587162FotyRA Simple Hanging Drop Cell Culture Protocol for Generation of 3D SpheroidsJ Vis Exp [Internet]2011May 6 [cited 2019 Mar 22]51Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/2158716210.3791/2720319711921587162Search in Google Scholar

Mehta G, Hsiao AY, Ingram M, Luker GD, Takayama S. Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J Control Release [Internet]. 2012 Dec 10 [cited 2019 Apr 8];164(2):192–204. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22613880MehtaGHsiaoAYIngramMLukerGDTakayamaSOpportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacyJ Control Release [Internet]2012Dec 10 [cited 2019 Apr 8];1642192204Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/2261388010.1016/j.jconrel.2012.04.045343694722613880Search in Google Scholar

Landriscina M, Bagalá C, Mandinova A, Soldi R, Micucci I, Bellum S, et al. Copper induces the assembly of a multiprotein aggregate implicated in the release of fibroblast growth factor 1 in response to stress. J Biol Chem [Internet]. 2001 Jul 6 [cited 2019 Mar 22];276(27):25549–57. Available from: http://www.jbc.org/lookup/doi/10.1074/jbc.M102925200LandriscinaMBagaláCMandinovaASoldiRMicucciIBellumSet alCopper induces the assembly of a multiprotein aggregate implicated in the release of fibroblast growth factor 1 in response to stressJ Biol Chem [Internet]2001Jul 6 [cited 2019 Mar 22];276272554957Available fromhttp://www.jbc.org/lookup/doi/10.1074/jbc.M10292520010.1074/jbc.M10292520011432880Search in Google Scholar

Yee EMH, Brandl MB, Pasquier E, Cirillo G, Kimpton K, Kavallaris M, et al. Dextran-Catechin inhibits angiogenesis by disrupting copper homeostasis in endothelial cells. Sci Rep [Internet]. 2017 Dec 9 [cited 2019 Mar 22];7(1):7638. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28794411YeeEMHBrandlMBPasquierECirilloGKimptonKKavallarisMet alDextran-Catechin inhibits angiogenesis by disrupting copper homeostasis in endothelial cellsSci Rep [Internet]2017Dec 9 [cited 2019 Mar 22];717638Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/2879441110.1038/s41598-017-07452-w555043728794411Search in Google Scholar

Soncin F, Guitton JD, Cartwright T, Badet J. Interaction of human angiogenin with copper modulates angiogenin binding to endothelial cells. Biochem Biophys Res Commun [Internet]. 1997 Jul 30 [cited 2019 Mar 25];236(3):604–10. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0006291X97970182SoncinFGuittonJDCartwrightTBadetJInteraction of human angiogenin with copper modulates angiogenin binding to endothelial cellsBiochem Biophys Res Commun [Internet]1997Jul 30 [cited 2019 Mar 25];236360410Available fromhttp://linkinghub.elsevier.com/retrieve/pii/S0006291X9797018210.1006/bbrc.1997.70189245697Search in Google Scholar

Pan Q, Kleer CG, van Golen KL, Irani J, Bottema KM, Bias C, et al. Copper deficiency induced by tetrathiomolybdate suppresses tumor growth and angiogenesis. Cancer Res [Internet]. 2002 Sep 1 [cited 2019 Mar 25];62(17):4854–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12208730PanQKleerCGvan GolenKLIraniJBottemaKMBiasCet alCopper deficiency induced by tetrathiomolybdate suppresses tumor growth and angiogenesisCancer Res [Internet]2002Sep 1 [cited 2019 Mar 25];621748549Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/12208730Search in Google Scholar

Harris DA. Trafficking, turnover and membrane topology of PrP. Br Med Bull [Internet]. 2003 [cited 2019 Mar 22];66:71–85. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14522850HarrisDATrafficking, turnover and membrane topology of PrPBr Med Bull [Internet]2003[cited 2019 Mar 22];667185Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/1452285010.1093/bmb/66.1.71Search in Google Scholar

Narayanan G, R BS, Vuyyuru H, Muthuvel B, Konerirajapuram Natrajan S. CTR1 silencing inhibits angiogenesis by limiting copper entry into endothelial cells. Arai K, editor. PLoS One [Internet]. 2013 Sep 9 [cited 2019 Mar 25];8(9):e71982. Available from: https://dx.plos.org/10.1371/journal.pone.0071982NarayananGRBSVuyyuruHMuthuvelBKonerirajapuramNatrajan SCTR1 silencing inhibits angiogenesis by limiting copper entry into endothelial cellsArai K, editor. PLoS One [Internet]2013Sep 9 [cited 2019 Mar 25];89e71982Available fromhttps://dx.plos.org/10.1371/journal.pone.007198210.1371/journal.pone.0071982Search in Google Scholar

Mays CE, Coomaraswamy J, Watts JC, Yang J, Ko KWS, Strome B, et al. Endoproteolytic processing of the mammalian prion glycoprotein family. FEBS J [Internet]. 2014 Feb [cited 2019 Mar 22];281(3):862–76. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24286250MaysCECoomaraswamyJWattsJCYangJKoKWSStromeBet alEndoproteolytic processing of the mammalian prion glycoprotein familyFEBS J [Internet]2014Feb [cited 2019 Mar 22];281386276Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/2428625010.1111/febs.12654Search in Google Scholar

Winklhofer KF, Tatzelt J, Haass C. The two faces of protein misfolding: gain- and loss-of-function in neurodegenerative diseases. EMBO J [Internet]. 2008 Jan 23 [cited 2019 Mar 22];27(2):336–49. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18216876WinklhoferKFTatzeltJHaassCThe two faces of protein misfolding: gain- and loss-of-function in neurodegenerative diseasesEMBO J [Internet]2008Jan 23 [cited 2019 Mar 22];27233649Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/1821687610.1038/sj.emboj.7601930Search in Google Scholar

Salvesen Ø, Tatzelt J, Tranulis MA. The prion protein in neuroimmune crosstalk. Neurochem Int [Internet]. 2018 Nov [cited 2019 Mar 22]; Available from: https://linkinghub.elsevier.com/retrieve/pii/S0197018618303073SalvesenØTatzeltJTranulisMAThe prion protein in neuroimmune crosstalkNeurochem Int [Internet]2018Nov [cited 2019 Mar 22]; Available fromhttps://linkinghub.elsevier.com/retrieve/pii/S019701861830307310.1016/j.neuint.2018.11.010Search in Google Scholar

Cereghetti GM, Schweiger A, Glockshuber R, Van Doorslaer S. Electron Paramagnetic Resonance Evidence for Binding of Cu2+ to the C-terminal Domain of the Murine Prion Protein. Biophys J [Internet]. 2001 Jul [cited 2019 Mar 22];81(1):516–25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11423433CereghettiGMSchweigerAGlockshuberRVanDoorslaer SElectron Paramagnetic Resonance Evidence for Binding of Cu2+ to the C-terminal Domain of the Murine Prion ProteinBiophys J [Internet]2001Jul [cited 2019 Mar 22];81151625Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/1142343310.1016/S0006-3495(01)75718-9Search in Google Scholar

Whittal RM, Ball HL, Cohen FE, Burlingame AL, Prusiner SB, Baldwin MA. Copper binding to octarepeat peptides of the prion protein monitored by mass spectrometry. Protein Sci [Internet]. 2000 Feb [cited 2019 Mar 22];9(2):332–43. Available from: http://doi.wiley.com/10.1110/ps.9.2.332WhittalRMBallHLCohenFEBurlingameALPrusinerSBBaldwinMACopper binding to octarepeat peptides of the prion protein monitored by mass spectrometryProtein Sci [Internet]2000Feb [cited 2019 Mar 22];9233243Available fromhttp://doi.wiley.com/10.1110/ps.9.2.33210.1110/ps.9.2.332Search in Google Scholar

Massimino ML, Griffoni C, Spisni E, Toni M, Tomasi V. Involvement of caveolae and caveolae-like domains in signalling, cell survival and angiogenesis. Cell Signal [Internet]. 2002 Feb [cited 2019 Mar 22];14(2):93–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11781132MassiminoMLGriffoniCSpisniEToniMTomasiVInvolvement of caveolae and caveolae-like domains in signalling, cell survival and angiogenesisCell Signal [Internet]2002Feb [cited 2019 Mar 22];142938Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/1178113210.1016/S0898-6568(01)00232-7Search in Google Scholar

Satoh J, Kuroda Y, Katamine S. Gene expression profile in prion protein-deficient fibroblasts in culture. Am J Pathol [Internet]. 2000 Jul [cited 2019 Mar 22];157(1):59–68. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10880376SatohJKurodaYKatamineSGene expression profile in prion protein-deficient fibroblasts in cultureAm J Pathol [Internet]2000Jul [cited 2019 Mar 22];15715968Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/1088037610.1016/S0002-9440(10)64517-8Search in Google Scholar

Li C, Yan Z, Yang J, Chen H, Li H, Jiang Y, et al. Neuroprotective effects of resveratrol on ischemic injury mediated by modulating the release of neurotransmitter and neuromodulator in rats. Neurochem Int [Internet]. 2010 Feb [cited 2017 Jul 19];56(3):495–500. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0197018609003337LiCYanZYangJChenHLiHJiangYet alNeuroprotective effects of resveratrol on ischemic injury mediated by modulating the release of neurotransmitter and neuromodulator in ratsNeurochem Int [Internet]2010Feb [cited 2017 Jul 19];563495500Available fromhttp://linkinghub.elsevier.com/retrieve/pii/S019701860900333710.1016/j.neuint.2009.12.00920026214Search in Google Scholar

Rogers JT, Lahiri DK. Metal and inflammatory targets for Alzheimer’s disease. Curr Drug Targets [Internet]. 2004 Aug [cited 2019 Mar 25];5(6):535–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15270200RogersJTLahiriDKMetal and inflammatory targets for Alzheimer’s diseaseCurr Drug Targets [Internet]2004Aug [cited 2019 Mar 25];5653551Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/1527020010.2174/1389450043345272Search in Google Scholar

Rivera-Mancía S, Pérez-Neri I, Ríos C, Tristán-López L, Rivera-Espinosa L, Montes S. The transition metals copper and iron in neurodegenerative diseases. Chem Biol Interact [Internet]. 2010 Jul 30 [cited 2019 Mar 25];186(2):184–99. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0009279710002711Rivera-MancíaSPérez-NeriIRíosCTristán-LópezLRivera-EspinosaLMontesSThe transition metals copper and iron in neurodegenerative diseasesChem Biol Interact [Internet]2010Jul 30 [cited 2019 Mar 25];186218499Available fromhttps://linkinghub.elsevier.com/retrieve/pii/S000927971000271110.1016/j.cbi.2010.04.010Search in Google Scholar

De Riccardis L, Buccolieri A, Muci M, Pitotti E, De Robertis F, Trianni G, et al. Copper and ceruloplasmin dyshomeostasis in serum and cerebrospinal fluid of multiple sclerosis subjects. Biochim Biophys Acta - Mol Basis Dis [Internet]. 2018 May [cited 2019 Mar 11];1864(5):1828–38. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0925443918300875De RiccardisLBuccolieriAMuciMPitottiEDe RobertisFTrianniGet alCopper and ceruloplasmin dyshomeostasis in serum and cerebrospinal fluid of multiple sclerosis subjectsBiochim Biophys Acta - Mol Basis Dis [Internet]2018May [cited 2019 Mar 11];18645182838Available fromhttps://linkinghub.elsevier.com/retrieve/pii/S092544391830087510.1016/j.bbadis.2018.03.007Search in Google Scholar

Robertson M, Evans K, Robinson A, Trimble M, Lascelles P. Abnormalities of copper in Gilles de la Tourette syndrome. Biol Psychiatry [Internet]. 1987 Aug [cited 2019 Mar 25];22(8):968–78. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3475133RobertsonMEvansKRobinsonATrimbleMLascellesPAbnormalities of copper in Gilles de la Tourette syndromeBiol Psychiatry [Internet]1987Aug [cited 2019 Mar 25];22896878Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/347513310.1016/0006-3223(87)90006-0Search in Google Scholar

Gorman DA, Zhu H, Anderson GM, Davies M, Peterson BS. Ferritin Levels and Their Association With Regional Brain Volumes in Tourette’s Syndrome. Am J Psychiatry [Internet]. 2006 Jul 1 [cited 2019 Mar 25];163(7):1264–72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16816233GormanDAZhuHAndersonGMDaviesMPetersonBSFerritin Levels and Their Association With Regional Brain Volumes in Tourette’s SyndromeAm J Psychiatry [Internet]2006Jul 1 [cited 2019 Mar 25];1637126472Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/1681623310.1176/ajp.2006.163.7.1264Search in Google Scholar

Udvardi PT, Nespoli E, Rizzo F, Hengerer B, Ludolph AG. Nondopaminergic Neurotransmission in the Pathophysiology of Tourette Syndrome. In 2013 [cited 2018 Mar 5]. p. 95–130. Available from: http://linkinghub.elsevier.com/retrieve/pii/B9780124115460000044UdvardiPTNespoliERizzoFHengererBLudolphAGNondopaminergic Neurotransmission in the Pathophysiology of Tourette SyndromeIn2013http://linkinghub.elsevier.com/retrieve/pii/B978012411546000004410.1016/B978-0-12-411546-0.00004-4Search in Google Scholar

Hamilton IMJ, Gilmore WS, Strain JJ. Marginal Copper Deficiency and Atherosclerosis. Biol Trace Elem Res [Internet]. 2000 [cited 2019 Mar 22];78(1–3):179–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11314977HamiltonIMJGilmoreWSStrainJJMarginal Copper Deficiency and Atherosclerosis. Biol Trace Elem Res [Internet]2000[cited 2019 Mar 22];781–317990Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/1131497710.1385/BTER:78:1-3:179Search in Google Scholar

Casserly IP, Topol EJ. Convergence of atherosclerosis and alzheimer’s disease: Cholesterol, inflammation, and misfolded proteins. Discov Med [Internet]. 2004 Jun [cited 2019 Mar 22];4(22):149–56. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20704977CasserlyIPTopolEJConvergence of atherosclerosis and alzheimer’s disease: Cholesterol, inflammation, and misfolded proteinsDiscov Med [Internet]2004Jun [cited 2019 Mar 22];42214956Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/2070497710.1016/S0140-6736(04)15900-XSearch in Google Scholar

Yu G, Jiang L, Xu Y, Guo H, Liu H, Zhang Y, et al. Silencing Prion Protein in MDA-MB-435 Breast Cancer Cells Leads to Pleiotropic Cellular Responses to Cytotoxic Stimuli. Lasmezas CI, editor. PLoS One [Internet]. 2012 Nov 2 [cited 2019 Mar 22];7(11):e48146. Available from: http://dx.plos.org/10.1371/journal.pone.0048146YuGJiangLXuYGuoHLiuHZhangYet alSilencing Prion Protein in MDA-MB-435 Breast Cancer Cells Leads to Pleiotropic Cellular Responses to Cytotoxic StimuliLasmezas CI, editor. PLoS One [Internet]2012Nov 2 [cited 2019 Mar 22];711e48146Available fromhttp://dx.plos.org/10.1371/journal.pone.004814610.1371/journal.pone.0048146Search in Google Scholar

Corsaro A, Bajetto A, Thellung S, Begani G, Villa V, Nizzari M, et al. Cellular prion protein controls stem cell-like properties of human glioblastoma tumor-initiating cells. Oncotarget [Internet]. Impact Journals, LLC; 2016 Jun 21 [cited 2019 Mar 20];7(25):38638–57. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27229535CorsaroABajettoAThellungSBeganiGVillaVNizzariMet alCellular prion protein controls stem cell-like properties of human glioblastoma tumor-initiating cellsOncotarget [Internet]. Impact Journals, LLC;2016Jun 21 [cited 2019 Mar 20];7253863857Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/2722953510.18632/oncotarget.9575512241727229535Search in Google Scholar

Málaga-Trillo E, Solis GP, Schrock Y, Geiss C, Luncz L, Thomanetz V, et al. Regulation of embryonic cell adhesion by the prion protein. Weissmann C, editor. PLoS Biol [Internet]. 2009 Mar 10 [cited 2019 Mar 22];7(3):e55. Available from: https://dx.plos.org/10.1371/journal.pbio.1000055Málaga-TrilloESolisGPSchrockYGeissCLunczLThomanetzVet alRegulation of embryonic cell adhesion by the prion proteinWeissmann C, editor. PLoS Biol [Internet]2009Mar 10 [cited 2019 Mar 22];73e55Available fromhttps://dx.plos.org/10.1371/journal.pbio.100005510.1371/journal.pbio.1000055Search in Google Scholar

Santuccione A, Sytnyk V, Leshchyns’ka I, Schachner M. Prion protein recruits its neuronal receptor NCAM to lipid rafts to activate p59fyn and to enhance neurite outgrowth. J Cell Biol [Internet]. 2005 Apr 25 [cited 2019 Mar 22];169(2):341–54. Available from: http://www.jcb.org/lookup/doi/10.1083/jcb.200409127SantuccioneASytnykVLeshchyns’kaISchachnerMPrion protein recruits its neuronal receptor NCAM to lipid rafts to activate p59fyn and to enhance neurite outgrowthJ Cell Biol [Internet]2005Apr 25 [cited 2019 Mar 22];169234154Available fromhttp://www.jcb.org/lookup/doi/10.1083/jcb.20040912710.1083/jcb.200409127Search in Google Scholar

Zocche Soprana H, Canes Souza L, Debbas V, Martins Laurindo FR. Cellular prion protein (PrPC) and superoxide dismutase (SOD) in vascular cells under oxidative stress. Exp Toxicol Pathol [Internet]. 2011 Mar [cited 2019 Mar 22];63(3):229–36. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0940299309002991ZoccheSoprana HCanesSouza LDebbasVMartinsLaurindo FRCellular prion protein (PrPC) and superoxide dismutase (SOD) in vascular cells under oxidative stressExp Toxicol Pathol [Internet]2011Mar [cited 2019 Mar 22];63322936Available fromhttps://linkinghub.elsevier.com/retrieve/pii/S094029930900299110.1016/j.etp.2009.12.004Search in Google Scholar

Sauer H, Dagdanova A, Hescheler J, Wartenberg M. Redox-regulation of intrinsic prion expression in multicellular prostate tumor spheroids. Free Radic Biol Med [Internet]. 1999 Dec [cited 2019 Mar 22];27(11–12):1276–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10641721SauerHDagdanovaAHeschelerJWartenbergMRedox-regulation of intrinsic prion expression in multicellular prostate tumor spheroidsFree Radic Biol Med [Internet]1999Dec [cited 2019 Mar 22];2711–12127683Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/1064172110.1016/S0891-5849(99)00164-1Search in Google Scholar

Shyu W-C, Lin S-Z, Chiang M-F, Ding D-C, Li K-W, Chen S-F, et al. Overexpression of PrPC by adenovirus-mediated gene targeting reduces ischemic injury in a stroke rat model. J Neurosci [Internet]. 2005 Sep 28 [cited 2019 Mar 22];25(39):8967–77. Available from: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.1115-05.2005ShyuW-CLinS-ZChiangM-FDingD-CLiK-WChenS-Fet alOverexpression of PrPC by adenovirus-mediated gene targeting reduces ischemic injury in a stroke rat modelJ Neurosci [Internet]2005Sep 28 [cited 2019 Mar 22];2539896777Available fromhttp://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.1115-05.200510.1523/JNEUROSCI.1115-05.2005672559216192387Search in Google Scholar

Dupuis L, Mbebi C, Gonzalez de Aguilar J-L, Rene F, Muller A, de Tapia M, et al. Loss of Prion Protein in a Transgenic Model of Amyotrophic Lateral Sclerosis. Mol Cell Neurosci [Internet]. 2002 Feb [cited 2019 Mar 22];19(2):216–24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11860274DupuisLMbebiCGonzalezde Aguilar J-LReneFMullerAde TapiaMet alLoss of Prion Protein in a Transgenic Model of Amyotrophic Lateral SclerosisMol Cell Neurosci [Internet]2002Feb [cited 2019 Mar 22];19221624Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/1186027410.1006/mcne.2001.104911860274Search in Google Scholar

Whitehouse IJ, Miners JS, Glennon EBC, Kehoe PG, Love S, Kellett KAB, et al. Prion protein is decreased in Alzheimer’s brain and inversely correlates with BACE1 activity, amyloid-β levels and Braak stage. PLoS One [Internet]. Public Library of Science; 2013 [cited 2019 Mar 25];8(4):e59554. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23577068WhitehouseIJMinersJSGlennonEBCKehoePGLoveSKellettKABet alPrion protein is decreased in Alzheimer’s brain and inversely correlates with BACE1 activity, amyloid-β levels and Braak stagePLoS One [Internet]. Public Library of Science;2013[cited 2019 Mar 25];84e59554Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/2357706810.1371/journal.pone.0059554361844623577068Search in Google Scholar

Hood JD, Cheresh DA. Role of integrins in cell invasion and migration. Nat Rev Cancer [Internet]. 2002 Feb [cited 2019 Mar 25];2(2):91–100. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12635172HoodJDChereshDARole of integrins in cell invasion and migrationNat Rev Cancer [Internet]2002Feb [cited 2019 Mar 25];2291100Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/1263517210.1038/nrc72712635172Search in Google Scholar

Loubet D, Dakowski C, Pietri M, Pradines E, Bernard S, Callebert J, et al. Neuritogenesis: the prion protein controls β1 integrin signaling activity. FASEB J [Internet]. 2012 Feb [cited 2019 Mar 22];26(2):678–90. Available from: http://www.fasebj.org/doi/10.1096/fj.11-185579LoubetDDakowskiCPietriMPradinesEBernardSCallebertJet alNeuritogenesis: the prion protein controls β1 integrin signaling activityFASEB J [Internet]2012Feb [cited 2019 Mar 22];26267890Available fromhttp://www.fasebj.org/doi/10.1096/fj.11-18557910.1096/fj.11-18557922038049Search in Google Scholar

Gauczynski S, Peyrin JM, Haïk S, Leucht C, Hundt C, Rieger R, et al. The 37-kDa/67-kDa laminin receptor acts as the cell-surface receptor for the cellular prion protein. EMBO J [Internet]. 2001 Nov 1 [cited 2019 Mar 22];20(21):5863–75. Available from: http://emboj.embopress.org/cgi/doi/10.1093/emboj/20.21.5863GauczynskiSPeyrinJMHaïkSLeuchtCHundtCRiegerRet alThe 37-kDa/67-kDa laminin receptor acts as the cell-surface receptor for the cellular prion proteinEMBO J [Internet]2001Nov 1 [cited 2019 Mar 22];2021586375Available fromhttp://emboj.embopress.org/cgi/doi/10.1093/emboj/20.21.586310.1093/emboj/20.21.586312529011689427Search in Google Scholar

Mbazima V, Da Costa Dias B, Omar A, Jovanovic K, Weiss SFT. Interactions between PrP(c) and other ligands with the 37-kDa/67-kDa laminin receptor. Front Biosci (Landmark Ed [Internet]. 2010 Jun 1 [cited 2019 Mar 22];15:1150–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20515747MbazimaVDaCosta Dias BOmarAJovanovicKWeissSFTInteractions between PrP(c) and other ligands with the 37-kDa/67-kDa laminin receptorFront Biosci (Landmark Ed [Internet]2010Jun 1 [cited 2019 Mar 22];15115063Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/2051574710.2741/366720515747Search in Google Scholar

Watts JC, Huo H, Bai Y, Ehsani S, Jeon AHW, Won AH, et al. Interactome analyses identify ties of PrP and its mammalian paralogs to oligomannosidic N-glycans and endoplasmic reticulum-derived chaperones. Mabbott N, editor. PLoS Pathog [Internet]. 2009 Oct 2 [cited 2019 Mar 22];5(10):e1000608. Available from: https://dx.plos.org/10.1371/journal.ppat.1000608WattsJCHuoHBaiYEhsaniSJeonAHWWonAHet alInteractome analyses identify ties of PrP and its mammalian paralogs to oligomannosidic N-glycans and endoplasmic reticulum-derived chaperonesMabbott N, editor. PLoS Pathog [Internet]2009Oct 2 [cited 2019 Mar 22];510e1000608Available fromhttps://dx.plos.org/10.1371/journal.ppat.100060810.1371/journal.ppat.1000608274944119798432Search in Google Scholar

eISSN:
2564-615X
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Life Sciences, other, Medicine, Biomedical Engineering, Physics, Nanotechnology, Biophysics