Cite

[1]. P.H.V. Saavedra, L. Huang. F. Ghazavi, S. Kourula, T.V. Berghe, N. Takahashi, P. Vandenabeele, L. Mohamed, Apoptosis of intestinal epithelial cells restricts Clostridium difficile infection in a model of pseudomembranous colitis, Nature Communications 9 (2018) 4846. DOI: 10.1038/s41467-018-07386-510.1038/s41467-018-07386-5Search in Google Scholar

[2]. S.A. Kuehne, S.T. Cartman, J.T. Heap, M.L. Kelly, A. Cockayne, N.P. Minton, The role of toxin A and toxin B in Clostridium difficile infection, Nature 467 (2010) 711–713. DOI: 10.1038/nature0939710.1038/nature09397Search in Google Scholar

[3]. D. Lyras, J.R. O’Connor, P.M. Howarth, S.P. Sambol, G.P. Carter, T. Phumoonna, R. Poon, V. Adams, G. Vedantam, S. Johnson, D.N. Gerding, J.I. Rood, Toxin B is essential for virulence of Clostridium difficile, Nature 458 (2009) 1176–1179. DOI: 10.1038/nature0782210.1038/nature07822Search in Google Scholar

[4]. W.K. Smits, D. Lyras, D.B. Lacy, M.H. Wilcox, E.J. Kuijper, Clostridium difficile infection, Nature Reviews Disease Primers 2 (2016) 16020. DOI: 10.1038/nrdp.2016.2010.1038/nrdp.2016.20Search in Google Scholar

[5]. J. Freeman, F.J. O’Neill, M.H. Wilcox, Effects of cefotaxime and desacetylcefotaxime upon Clostridium difficile proliferation and toxin production in a triple-stage chemostat model of the human gut, Journal of Antimicrobial Chemotherapy 52 (2003) 96-102. DOI: 10.1093/jac/dkg26710.1093/jac/dkg267Search in Google Scholar

[6]. A.N. Ananthakrishnan, Clostridium difficile infection: epidemiology, risk factors and management, Nature Reviews Gastroenterology & Hepatology 8 (2011) 17-26. DOI: 10.1038/nrgastro.2010.19010.1038/nrgastro.2010.190Search in Google Scholar

[7]. M. Kachrimanidou, N. Malisiovas, Clostridium difficile infection: a comprehensive review, Critical Reviews in Microbiology 37 (2011) 178-87. DOI: 10.3109/1040841X.2011.55659810.3109/1040841X.2011.556598Search in Google Scholar

[8]. A.M. Jarrad, T. Karoli, A. Debnath, C.Y. Tay, J.X. Huang, G. Kaeslin, A.G. Elliott, Y. Miyamoto, S. Ramu, A.M. Kavanagh, J. Zuegg, L. Eckmann, M.A. Blaskovich, M.A. Cooper, Metronidazole-triazole conjugates: activity against Clostridium difficile and parasites, European Journal of Medicinal Chemistry 101 (2015) 96-102. DOI: 10.1016/j.ejmech.2015.06.01910.1016/j.ejmech.2015.06.019Search in Google Scholar

[9]. K.Z. Vardakas, K.A. Polyzos, K. Patouni, P.I. Rafailidis, G. Samonis, M.E. Falagas, Treatment failure and recurrence of Clostridium difficile infection following treatment with vancomycin or metronidazole: a systematic review of the evidence, International Journal of Antimicrobial Agents 40 (2012) 1-8. DOI: 10.1016/j.ijantimicag.2012.01.00410.1016/j.ijantimicag.2012.01.004Search in Google Scholar

[10]. I.R. Poxton, Fidaxomicin: a new macrocyclic, RNA polymerase-inhibiting antibiotic for the treatment of Clostridium difficile infections, Future Microbiology 5 (2010) 539-48. DOI: 10.2217/fmb.10.20.10.2217/fmb.10.20Search in Google Scholar

[11]. F. Chaparro-Rojas, K.M. Mullane, Emerging therapies for Clostridium difficile infection - focus on fidaxomicin, Infection and Drug Resistance 6 (2013) 41-53. DOI: 10.2147/IDR.S2443410.2147/IDR.S24434Search in Google Scholar

[12]. E.C. Oldfield IV, E.C. Oldfield III, D.A. Johnson, Clinical update for the diagnosis and treatment of Clostridium difficile infection, World Journal of Gastrointestinal Pharmacology and Therapeutics 5 (2014) 1-26. DOI: 10.4292/wjgpt.v5.i1.110.4292/wjgpt.v5.i1.1Search in Google Scholar

[13]. D.M. Musher, N. Logan, A.M. Bressler, D.P. Johnson, J.F. Rossignol, Nitazoxanide versus vancomycin in Clostridium difficile infection: a randomized, double-blind study, Clinical Infectious Diseases 48 (2009) 41-6. DOI: 10.1086/59655210.1086/596552Search in Google Scholar

[14]. K.M. Land, P.J. Johnson, Molecular basis of metronidazole resistance in pathogenic bacteria and protozoa, Drug Resistance Updates 2 (1999) 289-294. DOI: 10.1054/drup.1999.010410.1054/drup.1999.0104Search in Google Scholar

[15]. S. Lofmark, C. Edlund, C.E. Nord, Metronidazole is still the drug of choice for treatment of anaerobic infections, Clinical Infectious Diseases 50 (2010) S16-23. DOI: 10.1086/64793910.1086/647939Search in Google Scholar

[16]. A. Kuriyama, J.L. Jackson, A. Doi, T. Kamiya, Metronidazole-induced central nervous system toxicity: A systematic review. Clinical Neuropharmacology 34 (2011) 241–247. DOI: 10.1097/WNF.0b013e3182334b35.10.1097/WNF.0b013e3182334b35Search in Google Scholar

[17]. S. Maa, A. Otto, D. Albrecht, K. Riedel, A. Trautwein-Schult, D. Becher, Proteomic signatures of Clostridium difficile stressed with metronidazole, vancomycin, or fidaxomicin, Cells 7 (2018) 213. DOI: 10.3390/cells711021310.3390/cells7110213Search in Google Scholar

[18]. C.M. Surawicz, L.J. Brandt, D.G. Binion, A.N. Ananthakrishnan, S.R. Curry, P.H. Gilligan, L.V. McFarland, M. Mellow, B.S. Zuckerbraun, Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections, American Journal of Gastroenterology 108 (2013) 478-498. DOI: 10.1038/ajg.2013.410.1038/ajg.2013.4Search in Google Scholar

[19]. T.G. Gweon, K.J. Lee, D.H. Kang, S.S. Park, K.H. Kim, H.J. Seong, T.H. Ban, S.J. Moon, J.S. Kim, S.W. Kim, A case of toxic megacolon caused by Clostridium difficile infection and treated with fecal microbiota transplantation, Gut and Liver 9 (2015) 247-250. DOI: 10.5009/gnl1415210.5009/gnl14152Search in Google Scholar

[20]. J.Y. Chang, D.A. Antonopoulos, A. Kalra, A. Tonelli, W.T. Khalife, T.M. Schmidt, V.B. Young, Decreased diversity of the fecal microbiome in recurrent Clostridium difficile-associated diarrhea, The Journal of Infectious Diseases 197 (2008) 435-438. DOI: 10.1086/52504710.1086/525047Search in Google Scholar

eISSN:
2286-038X
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Chemistry, other