Acceso abierto

Role of exogenous application of abscisic acid ABA in drought tolerance and evaluation of antioxidant activity in durum wheat genotypes


Cite

[1]. D’Souza, A.E. and Jolliffe, D., Food security and wheat prices in Afghanistan: a distribution-sensitive analysis of house hold level impacts, World Bank Policy Research Working Paper Washington, DC: World Bank Group, 2012.10.1596/1813-9450-6024Search in Google Scholar

[2]. Turral, H.; Svendsen, M.; Faures, JM., Investing in irrigation: Reviewing the past and looking to the future. Agricultural Water Management., Special issue, 2009. doi:10.1016/J.agwat.2009.07.012.10.1016/j.agwat.2009.07.012Search in Google Scholar

[3]. Rijsberman, FR., Water scarcity: fact or fiction? Agric. Water Manag,2006, 80, 5–22. doi:10.1016/j.agwat.2005.07.001.10.1016/j.agwat.2005.07.001Search in Google Scholar

[4]. Daryanto, S.; Wang, L.; Jacinthe, P.A., Global synthesis of drought effects on cereal, legume, tuber and root crops production: A review. Agricultural Water Management, 2016, https://doi.org/10.1016/j.agwat.2016.04.022.10.1016/j.agwat.2016.04.022Search in Google Scholar

[5]. Tack, J.; Barkley, A.; Nalley, L.L., Effect of warming temperatures on US wheat yields. Proc. Natl. Acad. Sci. U.S.A, 2015,112, 6931–6936. doi: 10.1073/pnas. 1415181112.10.1073/pnasSearch in Google Scholar

[6]. FAO, Crop Prospects and Food Situation. Quarterly Global Report No. 4, December 2019. Rome.Search in Google Scholar

[7]. Manickavelu, A.; Kawaura, K.; Oishi, K.; Shin,IT.; Kohara, Y.; Yahiaoui, N., Comprehensive functional analyses of expressed sequence tags in common wheat (Triticum aestivum). DNA Res. 2012,19, 165–177. doi: 10.1093/dnares/dss001.10.1093/dnares/dss001332508022334568Search in Google Scholar

[8]. Sarto, M.V.M.; Sarto, J.R.W.; Rampim, L.; Bassegio, D.; Da Costa, P.F.; Inagaki, A.M.; Wheat phenology and yield under drought: a review. Aust. J. Crop Sci,2017, 11, 941–946.Search in Google Scholar

[9]. Peng, Z.; Wang, M.; Li, F. Lv. H.; Li, C.; Xia, G., A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat. Mol Cell Proteomics,2009,8, 2676–2686.Search in Google Scholar

[10]. Shao, H.B.; Liang, Z.S.; Shao, M.A.; Wang, B.C., Changes of some physiological and biochemical indices for soil water deficits among 10 wheat genotypes at seedling stage, Colloids Surf. B: Biointerfaces, 2005,42 (1), 107–113.10.1016/j.colsurfb.2005.01.01115833661Search in Google Scholar

[11]. Schachtman, DP.; Goodger, JQ., Chemical root to shoot signaling under drought. Trends Plant Sci,2008,13, 281–287.Search in Google Scholar

[12]. Gill, SS., Tuteja, N, Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants Plant Physiology and Biochemistry, 2010,48, 909–930. doi:10.1016/j.plaphy.2010.08.016.10.1016/j.plaphy.2010.08.01620870416Search in Google Scholar

[13]. Chen, M.; Shen, W. B.; Ruan, H.H.; Xu, L.L., Effects of nitric oxide on root growth and its oxidative damage in wheat seedlings under salt stress. Zhi Wu Shang Li Yu Fen Zi Sheng Wu Xue Bao, 2004,30, 569–576.Search in Google Scholar

[14]. Li, W.; Yao, A.; Zhi, H., Kaur, K.; Zhu, YC.; Jia, M.; Zhao, H.; Wang, Q.; Jin, S.; Zhao, G; Xiong, Z.Q.; Zhang, Y.Q.; Angelman Syndrome Protein Ube3a Regulates Synaptic Growth and Endocytosis by Inhibiting BMP Signaling in Drosophila, PLoS Genet, 2016,12(5),1060-1062.10.1371/journal.pgen.1006062488377327232889Search in Google Scholar

[15]. Dröge, W., Free radicals in the physiological control of cell function. Physiol Rev, 2002,Vol. 82,47–95.10.1152/physrev.00018.200111773609Search in Google Scholar

[16]. Appel, H.; Hirt, H., Reactive Oxygen Species: Metabolism, Oxidative Stress, and Signal Transduction. Annu. Rev. Plant Biol. 2004,55, 373–99.Search in Google Scholar

[17]. Yang, Y.; Xu, S.; An L, Chen, N., NADPH oxidase-dependent hydrogen peroxide production, induced by salinity stress, may be involved in the regulation of total calcium in roots of wheat. J. Plant Physiol.,2007,164, 1429–1435.Search in Google Scholar

[18]. Finkelstein, R.R.; Gampala, S.S.L.; Rock, C.D., Abscisic acid signaling in seeds and seedlings. Plant Cell, 2002,14, S15–S45.10.1105/tpc.010441Search in Google Scholar

[19]. Fujita, M;, Fujita, Y.; Maruyama, K.; Seki, M.; Hiratsu, K.; Ohme-Takagi, M.; Tran, L.S.P.; Yamaguchi-Shinozaki, K.; Shinozaki, K., A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J,2004,39, 863–876.Search in Google Scholar

[20]. Roychoudhury, A.; Paul, S.; Basu, S., Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Rep., 2013,Vol. 32, 985–1006, doi: 10.1007/s00299-013-1414-5.10.1007/s00299-013-1414-5Search in Google Scholar

[21]. Reczek, C.R.; Chandel, N.S., ROS-dependent signal transduction. Curr. Opin. Cell Biol,2015,33, 8–13. doi: 10.1016/j.ceb.2014.09.010.10.1016/j.ceb.2014.09.010Search in Google Scholar

[22]. Nayyar, H.; Walia, D.P., Genetic variation in wheat in response to water stress and abscisic acid induced accumulation of osmolytes in developing grain. J. Agron. Crop Sci., 2004,190, 39-45.Search in Google Scholar

[23]. Bousba, R.; Ykhlef, N.; Djekoun, A., Water use efficiency and flag leaf photosynthetic in response to water deficit of durum wheat (Trticum durum Desf). World Journal of Agricultural Sciences,2009,5, 609–616.Search in Google Scholar

[24]. Blum, A.; Ebercon. A., Cell membrane stability as a measure of drought and heat tolerance in wheat, Crop Sci., 1981,21, 4347.Search in Google Scholar

[25]. Bandurska, H.; Stravinsky, A.; Zielezinska, M., Effects of water deficit stress on membrane properties, lipid peroxidation and hydrogen peroxide metabolism in the leaves of barley genotypes. Acta Soc. Bot. Pol. 1997,66, 177–183.Search in Google Scholar

[26]. Premachandra, G.S.; Saneoka, H.; Fujita, K.; Ogata, S., Leaf water relations, osmotic adjustment, cell membrane stability, epicuticular wax load and growth as affected by increasing water deficits in sorghum. J. Exp. Bot.,1992, 43, 1569–1576.Search in Google Scholar

[27]. Ashraf, M.; Ali, Q., Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environmental and Experimental Botany, 2008,63, 266–273.Search in Google Scholar

[28]. Bajji, M.; Lutts, S.; Kin, J.M., Physiological changes after exposure to and recovery from polyethylene glycol-induced water deficit in roots and leaves of durum wheat (Triticum durum Desf.) cultivars differing in drought resistance. J. Plant Physiol.,2000,157, 100–108.Search in Google Scholar

[29]. Chakhchar, A.; Lamaoui, M.; Aissam, S.; Ferradous, A.; Wahbi, S.; El Mousadik, A.; Ibnsouda-Koraichi, S.; Filali-Maltouf, A.; El Modafar, C., Using chlorophyll fluorescence, photosynthetic enzymes and pigmentcomposition to discriminate drought tolerant ecotypes of Argania spinosa. Plant Biosyst, 2017, 152(3), 356–367. doi:10.1080/112635 04. 2017.1297334.Search in Google Scholar

[30]. Buckley, T.N.; Mott, K.A., Dynamics of stomatal water relations during the humidity response: implications of two hypothetical mechanisms. Plant Cell and Environment, 2002, 25, 407–419.Search in Google Scholar

[31]. Brodribb, T.J.; Holbrook, N.M., Stomatal Closure during Leaf Dehydration, Correlation with Other Leaf Physiological Traits. Plant Physiology, 2003,132, 2166–2173.Search in Google Scholar

[32]. Cornic, G., Drought stress inhibits photosynthesis by decreasing stomatal aperture – not by affecting ATP synthesis. Trends in Plant Science, 2000,5, 187–188.10.1016/S1360-1385(00)01625-3Search in Google Scholar

[33]. Hniličková, H.; Hnilička, F.; Orsák, M.; Hejnák, V., Effect of salt stress on growth, electrolyte leakage, Na+ and K+ content in selected plant species. Plant Soil Environ, 2019,65, 90–96.Search in Google Scholar

[34]. Fakhrfeshani, M.; Shahriari-Ahmadi, F.; Niazi, A.; Moshtaghi, N.; Zare-Mehrjerdi, M., The effect of salinity stress on Na+, K+ concentration, Na+/K+ ratio, electrolyte leakage and HKT expression profile in roots of Aeluropus littoralis. Journal of Plant Molecular Breeding, 2015, 3, 1–10.Search in Google Scholar

[35]. Jia, W.; Zhang, J., Water stress-induced abscisic acid accumulation in relation to reducing agents and sulphhydryl modifiers in maize plant. Plant Cell and Environment, 2000,23, 1389–1393.Search in Google Scholar

[36]. Zhang, H.; Mao, X.; Wang, C.; Jing, R., Overexpression of a common wheat gene Tasnrk 2.8 enhances tolerance to drought, salt and low temperature in Arabidopsis. PLoS One,2010,5, P16041. doi: 10.1371/journal.pone.0016041.10.1371/journal.pone.0016041Search in Google Scholar

[37]. Tong, S.M.; Xi, H.X.; Ai, K.J.; Hou, H.S., Overexpression of wheat TaNCED gene in Arabidopsis enhances tolerance to drought stress and delays seed germination. Biol. Plant, 2017, 61, 64–72. doi: 10.1007/s10535-016-0692-5.10.1007/s10535-016-0692-5Search in Google Scholar

[38]. Finkelstein, R.R.; Gampala, S.S.L.; Rock, C.D., Abscisic acid signaling in seeds and seedlings. Plant Cell, 2002,14, S15–S45.10.1105/tpc.010441Search in Google Scholar

[39]. Jiang, Y.; Huang, B., Drought and heat stress injury to two cool season turf grasses in relation to antioxidant metabolism and lipid peroxidation. Crop Sci., 2001,41, 436–442.Search in Google Scholar

[40]. Gill, S.S.; Tuteja, N., Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants, Plant Physiology and Biochemistry 2010, 48, 909–930. doi:10.1016/j.plaphy,08.016.Search in Google Scholar

[41]. Yang, Y.; Han, C.; Liu, Q.; Lin, B.; Wang, J., Effect of drought and low light on growth and enzymatic antioxidant system of Picea asperata seedlings. Acta Physiol Plant.,2008, 30, 433–440.Search in Google Scholar

[42]. Khan, N.A.; Samiullah, Singh, S, Nazar, R., Activities of antioxidative enzymes, sulphur assimilation, photosynthetic activity and growth of wheat (Triticum aestivum) cultivars differing in yield potential under cadmium stress, J. Agro Crop Sci., 2007,193, 435–444.Search in Google Scholar

[43]. Wang, C.Q.; Li, R.C., Enhancement of superoxide dismutase activity in the leaves of white clover (Trifolium repens L.) in response topolyethylene glycol-induced water stress, Acta Physiol. Plant,2008,30, 841-847.Search in Google Scholar

[44]. Rossa, M.M.; De Oliveira, M.C.; Okamoto, O.K.. Lopes, P.F.; Colepicolo, P., Effect of visible light on superoxide dismutase (SOD) activity in the red alga Gracilariopsis tenuifrons (Gracilariales, Rhodophyta), J. Appl. Phycol, 2002,14, 151–157.Search in Google Scholar

[45]. Chen, M.; Shen, W.B.; Ruan, H.H.; Xu, L. L Effects of nitric oxide on root growth and its oxidative damage in wheat seedlings under salt stress. Zhi Wu Shang Li Yu Fen Zi Sheng Wu Xue Bao. 2004,30, 569–576.Search in Google Scholar

[46]. Yang, Y.; Xu, S.; An, L.; Chen, N., NADPH oxidase-dependent hydrogen peroxide production, induced by salinity stress, may be involved in the regulation of total calcium in roots of wheat. J. Plant Physiol., 2007,164, 1429–1435.Search in Google Scholar

[47]. Baxter, A.; Mittler, R.; Suzuki, N., ROS as key players in plant stress signalling. J. Exp. Bot.2014,65, 1229–1240. doi: 10.1093/jxb/ert375.10.1093/jxb/ert375Search in Google Scholar

[48]. Mickky, B.M.; Aldesuquy, H.S., Impact of osmotic stress on seedling growth observations, membrane characteristics and antioxidant defense system of different wheat genotypes. Egypt. J. Basic Appl. Sci., 2017,4, 47–54. doi: 10.1016/j. ejbas.2016.10.001.Search in Google Scholar

[49], Jiang, Y.; Huang, B.; Drought and heat stress injury to two cool season turf grasses in relation to antioxidant metabolism and lipid peroxidation. Crop Sci., 2001,41, 436–442.Search in Google Scholar

[50]. Hameed, A.; Bibi, N.; Akhter, J.; Iqbal, N., Differential changes in antioxidants, proteases and lipid peroxidation in flag leaves of wheat genotypes under different levels of water deficit conditions. Plant Physiol. Bioch., 2011,49, 178–185.Search in Google Scholar

[51]. Thiaw, S., Association between slow leaf-electrolyte-leakage under heat stress and heat tolerance during reproductive development in cowpea. PHD Dissertation, University of California, Riverside, 2003, 100.Search in Google Scholar

[52]. Chance, B.; Machly, A.C., Assay of catalases and peroxidases. Methods of Enzmol., 1955,2, 764–775.Search in Google Scholar

[53]. Beauchamp, C.; Fridovich, I., Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels, Analytical Biochemistry, 1971, 44(1), 276287. doi.org/10.1016/0003-2697(71)90370-8.10.1016/0003-2697(71)90370-8Search in Google Scholar

[54]. Chance, B.; Machly, A.C.;. Methods of biochemical analysis. In: Glick D. Editors. International Publishers Inc. 1967.Search in Google Scholar

[55]. Cakmak, I.; Horst, J.H., Effects of Aluminum on Lipid Peroxidation, Superoxide Dismutase, Catalase and Peroxidase Activities in Root Tips of Soybean (Glycine max). Physiologia Plantarum, 1991,83, 463–468. http://dx.doi.org/10.1111/j.1399-3054.1991.tb00121.x.10.1111/j.1399-3054.1991.tb00121.xSearch in Google Scholar

[56]. Zhou, R.; Squires, T.M.; Ambrose, S.J.; Abrams, S.R.; Ross, A.R.S.; Cutler, A.J.,. Rapid extraction of ABA and its metabolites for liquid chromatography-tandem mass spectrometry analysis. J. Chromatogr. A, 2003,1010, 75–85.Search in Google Scholar

eISSN:
2367-5144
Idioma:
Inglés
Calendario de la edición:
Volume Open
Temas de la revista:
Chemistry, other, Geosciences, Geography, Life Sciences, Physics