Acceso abierto

A thermodynamic model for solution behavior and solid-liquid equilibrium in Na-K-Mg-Ca-Al(III)-Fe(III)-Cr(III)-Cl-H2O system from low to very high concentration at 25°C


Cite

[1]. Pitzer, K., Thermodynamics of electrolytes. I. Theoretical basis and generalequations, J. Phys. Chem., 1973, 77, 268-277.10.1021/j100621a026Search in Google Scholar

[2]. Pitzer, K., in Activity Coefficients in Electrolyte Solutions, 2nd ed., CRC Press, Boca Raton, 1991.Search in Google Scholar

[3]. Harvie, C.; Moller, N.; Weare, J., The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system from zero to high concentration at 25°C., Geochim. Cosmochim. Acta, 1984, 48, 723-751.10.1016/0016-7037(84)90098-XSearch in Google Scholar

[4]. Christov, C., Thermodynamic study of the Na-Cu-Cl-SO4 -H2O system at the temperature 298.15 K, J. Chem. Thermodynamics, 2000, 32, 285-295.10.1006/jcht.1999.0564Search in Google Scholar

[5]. Christov, C., Thermodynamics of formation of double salts and solid solutions from aqueous solutions, J. Chem. Thermodynamics, 2005, 37, 1036-1060.10.1016/j.jct.2005.01.008Search in Google Scholar

[6]. Greenberg, J.P.; Moller, N., The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na-K-Ca-Cl-SO4-H2O system to high concentration from 0 to 250°C, Geochim. Cosmochim. Acta, 1989, 53, 2503-2518.10.1016/0016-7037(89)90124-5Search in Google Scholar

[7]. Christov, C.; Moller, N., A chemical equilibrium model of solution behavior and solubility in the H-Na-K-Cl-OH-HSO4-SO4-H2O system to high concentration and temperature, Geochim.Cosmochim. Acta, 2004, 68, 1309-1331.10.1016/j.gca.2003.08.017Search in Google Scholar

[8]. Christov, C., An isopiestic study of aqueous NaBr and KBr at 50°C. Chemical Equilibrium model of solution behavior and solubility in the NaBr-H2O, KBr-H2O and Na-K-Br-H2O systems to high concentration and temperature, Geochim.Cosmochim. Acta, 2007, 71, 3357-3369.10.1016/j.gca.2007.05.007Search in Google Scholar

[9]. Christov, C., Chemical equilibrium model of solution behavior and solubility in the MgCl2-H2O, and HCl-MgCl2-H2O systems to high concentration from 0°C to 100°C, J. Chem. Eng. Data, 2009, 54, 627-635.10.1021/je900135wSearch in Google Scholar

[10]. Lassin, A.; Christov, C.; André L.; Azaroual M., Chemistry of Li-Na-K-OH-H2O brines up to high concentrations and temperatures, Mineralogical Magazine, 2011, 75, A1272.Search in Google Scholar

[11]. Lassin, A.; Christov, C., André, L.; Azaroual M., Chemistry of H-Li-Na-K-Cl-H2O brines to high concentrations and temperatures, Mineralogical Magazine, 2012, 76, No. 6, 1977.Search in Google Scholar

[12]. Lassin, A.; Christov, C.; André L.; Azaroual M., A thermodynamic model of aqueous electrolyte solution behavior and solid liquid equilibrium in the Li-H-Na-K-Cl-OH-H2O system to a very high concentrations (40 molal) from 0o to 250°C, American Journal of Science, 2015, 315, 204-256.10.2475/03.2015.02Search in Google Scholar

[13]. Christov, C.; Moller N., A chemical equilibrium model of solution behavior and solubility in the H-Na-K-Ca-Cl-OH-HSO4-SO4-H2O system to high concentration and temperature, Geochim.Cosmochim. Acta, 2004, 68, 3717-3739.10.1016/j.gca.2004.03.006Search in Google Scholar

[14]. Moller, N.; Christov, C.; Weare, J., Thermodynamic models of aluminum silicate mineral solubility for application to enhanced geothermal systems. in Proceedings of 31th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, January 30 –February 2006, 1, (8 pages).Search in Google Scholar

[15]. Moller, N.; Christov, C.; Weare, J., Thermodynamic model for predicting interactions of geothermal brines with hydrothermal aluminum silicate minerals. in Proceedings of 32th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, January, 2007, 22-24 (8 pages).Search in Google Scholar

[16]. André L.; Christov C.; Lassin A., Azaroual, M., Water Rock Interaction [WRI14],Thermodynamic behavior of FeCl3-H2O and HCl-FeCl3-H2O systems - A Pitzer Model at 25°C, Procedia Earth and Planetary Science, 2013, 7, 14-18.10.1016/j.proeps.2013.03.113Search in Google Scholar

[17]. André L.; Christov, C.; Lassin A.; Azaroual, M., Thermodynamic model for solution behavior and solid-liquid equilibrium in Na-Al(III)-Fe(III)-Cr(III)-Cl-H2O system at 25°C, Acta Scientifica Naturalis, 2018, 5, 6-16.10.2478/asn-2018-0002Search in Google Scholar

[18]. Lach, A.; André, L.; Guignot, S.; Christov, C.; Henocq, P.; Lassin, A., A Pitzer parameterization to predict solution properties and salt solubility in the H-Na-K-Ca-Mg-NO3-H2O system at 298.15 K”, Journal of Chemical & Engineering Data, 2018, 63, 787−800.10.1021/acs.jced.7b00953Search in Google Scholar

[19]. Christov, C.; Zhang, M.; Talman, S.; Reardon, E.; Yang, T., Review of issues associated with evaluation of Pitzer interaction parameters, Mineralogical Magazine, 2012, 76, No. 6, 1578.Search in Google Scholar

[20]. Christov, C., Thermodynamic study of the K-Mg-Al-Cl-SO4-H2O system at the temperature 298.15 K., CALPHAD, 2001, 25(3), 445-454.10.1016/S0364-5916(01)00063-3Search in Google Scholar

[21]. Christov, C., Thermodynamics of formation of ammonium, sodium, and potassium alums and chromium alums, CALPHAD, 2002,26, 85-94.10.1016/S0364-5916(02)00026-3Search in Google Scholar

[22]. Christov, C., Thermodynamic study of quaternary systems with participation of ammonium and sodium alums and chromium alums, CALPHAD, 2002, 26, 341-352.10.1016/S0364-5916(02)00049-4Search in Google Scholar

[23]. Christov, C., Thermodynamic study of the co-crystallization of ammonium, sodium and potassium alums and chromium alums, CALPHAD, 2003, 27, 153-160.10.1016/S0364-5916(03)00046-4Search in Google Scholar

[24]. Christov, C.; Dickson, A.; Moller N., Thermodynamic modeling of aqueous aluminum chemistry and solid liquid equilibria to high solution concentration and temperature. I. The acidic H-Al-Na-K-Cl-H2O system from 0o to 100°C, J. Solution Chem., 2007, 36, 1495-1523.10.1007/s10953-007-9191-9Search in Google Scholar

[25] André, L.; Christov, C.; Lassin, A.; Azaroual, M., Pitzer ion-interaction parameters for Al(III) in the (H-Na-K-Ca-Mg-Cl-H2O} system up to salts solubility at 298.15 K, ABC-Salt IV Workshop2015, Apr. 2015, Heidelberg, Germany, <hal-01136472>Search in Google Scholar

[26]. Christov, C., Thermodynamic study of aqueous sodium, potassium and chromium chloride systems at the temperature 298.15 K, J. Chem. Thermodynamics, 2003, 35, 909-917.10.1016/S0021-9614(03)00042-9Search in Google Scholar

[27]. Christov, C.; Ivanova, K.; Velikova, S.; Tanev, S., Thermodynamic study of aqueous sodium and potassium chloride and chromate systems at the temperature 298.15 K, J. Chem. Thermodynamics, 2002, 34, 987-994.10.1006/jcht.2002.0965Search in Google Scholar

[28]. Christov, C., Thermodynamic study of the KCl -K2SO4 - K2Cr2O7-H2O system at the temperature 298.15 K, CALPHAD, 1998, 22, 449-457.10.1016/S0364-5916(99)00004-8Search in Google Scholar

[29]. Christov C., Thermodynamic study of the NaCl - Na2SO4 - Na2Cr2O7-H2O system at the temperature 298.15 K, CALPHAD, 2001, 25, 11-17.10.1016/S0364-5916(01)00025-6Search in Google Scholar

[30]. Christov, C., Pitzer ion-interaction parameters for Fe(II) and Fe(III) in the quinary {Na+K+Mg+Cl+SO4+H2O} system at T=298.15 K, J. Chem. Thermodynamics, 200436, 223-235.10.1016/j.jct.2003.11.010Search in Google Scholar

[31]. Christov, C., Study of (m1KCl + m2MeCl2)(aq), and (m1K2SO4 + m2MeSO4)(aq) where m denotes molality and Me denotes Cu or Ni, at the temperature 298.15 K, J. Chem. Thermodynamics, 1999, 31, 71-83.10.1006/jcht.1998.0419Search in Google Scholar

[32]. Christov, C., Isopiestic Determination of the osmotic coefficients of aqueous MgCl2-CaCl2 mixed solution at 25°C and 50°C. Chemical equilibrium model of solution behavior and solubility in the MgCl2-H2O, and MgCl2-CaCl2 -H2O systems to high concentration at 25°C and 50°C, J. Chem. Eng. Data, 2009, 54 627-635.10.1021/je8005634Search in Google Scholar

[33]. Linke, W., Solubilities Inorganic and Metal-Organic Compounds (4th ed.), Vols 1 and 2, American Chemical Society, Washington 1965.Search in Google Scholar

[34]. Gmelin’s Handbuch der Anorganischen Chemie, Eisen, Al [B]. Chemie, Berlin, 1932.Search in Google Scholar

[35]. Rumyantsev, A.V.; Hagemann, S.; Moog, H.C., Isopiestic investigation of the systems Fe2(SO4)3– H2SO4–H2O, FeCl3–H2O, and Fe(III)–(Na, K, Mg, Ca)Cln–H2O at 298.15 K, Zeitschrift fur Physikalische Chemie, 2004, 218, 1089–1127.Search in Google Scholar

[36] Farelo, F.; Fernandes, C.; Avelino, A., Solubilities for Six Ternary Systems: NaCl+NH4Cl+H2O, KCl+NH4Cl+ H2O, NaCl+LiCl+ H2O, KCl+LiCl+ H2O, NaCl+AlCl3+ H2O and KCl+AlCl3+ H2O at T= (298 to 333) K”, J. Chem. Eng. Data, 2005, 50, 1470-1477.10.1021/je050111jSearch in Google Scholar

[37] Malquori, G., Atti Accad. Lincei, 1927, 5, 576-578 (Data given in [33]).Search in Google Scholar

[38] Malquori, G., Gazz. Chim. Ital., 1927, 57, 661-666 (Data given in [33]).Search in Google Scholar

[39] Atbir, A.; El Hadek, M.; Cohen-Adad, R., Diagramme de phases du système ternaire KCl-FeCl3-H2O; Isothermes 15 et 30°C, J. Phys. IV France, 2001,. 11, Pr10-187-190.10.1051/jp4:20011028Search in Google Scholar

[40] Malquori, G., Gazz. Chim. Ital., 1928, 58, 891-898 (Data given in Linke [33]).Search in Google Scholar

[41] Patel, K., Seshardi S., Phase rule study of quaternary system KCl-AlCl3-MgCl2-H2O at 25 °C, Ind. J. Chem., 1966,6, 379–381.Search in Google Scholar

eISSN:
2367-5144
Idioma:
Inglés
Calendario de la edición:
Volume Open
Temas de la revista:
Chemistry, other, Geosciences, Geography, Life Sciences, Physics