Acceso abierto

Redox Status, Hematological Parameters as Well Liver and Kidney Function Indicators in Blood of Chickens Receiving Gold Nanoparticles


Cite

Abdelhalim M.A.K., JarrarB.M. (2011 a). Renal tissue alterations were size-dependent with smaller ones induced more effects and related with time exposure of gold nanoparticles. Lip. Health Dis., 10: 163.10.1186/1476-511X-10-163318773021936889Search in Google Scholar

Abdelhalim M.A.K., JarrarB.M. (2011 b). The appearance of renal cells cytoplasmic degeneration and nuclear destruction might be an indication of GNPs toxicity. Lip. Health Dis., 10: 147.10.1186/1476-511X-10-147317518021859444Search in Google Scholar

Abdelhalim M.A.K., Jarrar B.M. (2012). Histological alterations in the liver of rats induced by different gold nanoparticle sizes, doses and exposure duration. J. Nanobiotechnol., 10: 5.10.1186/1477-3155-10-5Search in Google Scholar

Abdelhalim M.A.K., Moussa S.A.A. (2012). The dimensional hematological alterations induced in blood of rats in vivo by intraperitoneal administration of gold nanoparticles. J. Nanomed. Nano-technol., 3: 138.10.4172/2157-7439.1000138Search in Google Scholar

Abdelhalim M.A.K., Moussa S.A.A. (2013). The gold nanoparticle size and exposure duration effect on the liver and kidney function of rats: in vivo. Saudi J. Biol. Sci., 2: 177–181.10.1016/j.sjbs.2013.01.007Search in Google Scholar

Adayemi O.S., Whiteley C.G. (2014). Interaction of metal nanoparticles with recombinant arginine kinase from Trypanosoma brucei: Thermodynamic and spectrofluorimetric evaluation. Bioch. Biophys. Acta, 1840: 701–706.10.1016/j.bbagen.2013.10.038Search in Google Scholar

Ahmadi F. (2012). Impact of different levels of silver nanoparticles (Ag-NPs) on performance, oxidative enzymes and blood parameters in broiler chicks. Pak. Vet. J., 32: 325–328.Search in Google Scholar

Alkilany A.M., Murphy C.J. (2010). Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J. Nanopart. Res., 12: 2313–2333.10.1007/s11051-010-9911-8Search in Google Scholar

Barath Mani Kanth S., Kalishwaralal K., Sriram M., Pandian S.R.K., Youn H., Eom S., Gurunathan S. (2010). Anti-oxidant effect of gold nanoparticles restrains hyperglycemic conditions in diabetic mice. J. Nanobiotechnol., 8: 16.10.1186/1477-3155-8-16Search in Google Scholar

Bartosz G. (2004). Second face of oxygen (in Polish). Polish Scientific Publishers PWN, Warsaw, pp. 376–378.Search in Google Scholar

Berce C., Lucan C., Petrushev B., Boca S., Miclean M., Sarpataki O., Astilean S., Buzoianu A., Tomuleasa C., Bojan A. (2016). In vivo assessment of bone marrow toxicity by gold nanoparticle-based bioconjugates in Crl:CD1(ICR) mice. Int. J. Nanomed., 1: 4261–4273.10.2147/IJN.S108711Search in Google Scholar

Bilska A., Kryczyk A., Włodek L. (2007). The different aspects of the biological role of glutathione (in Polish). Post. Hig. Med. Dosw., 61: 428–453.Search in Google Scholar

Chen L.Q., Fang L., Ling J., Ding C.Z., Kang B., Huang C.Z. (2015). Nanotoxicity of silver nanoparticles to red blood cells: size dependent adsorption, uptake, and hemolytic activity. Chem. Res. Toxicol., 28: 501–509.10.1021/tx500479mSearch in Google Scholar

Chen Y.S., Hung Y.C., Liau I., Huang G.S. (2009). Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res. Lett., 4: 858–864.10.1007/s11671-009-9334-6Search in Google Scholar

Cho W.S., Cho M., Jeong J., Choi M., Cho H.Y., Han B.S., Kim S.H., Kim H.O., Lim Y.T., Chung B.H., Jeong J. (2009). Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Tox. Appl. Pharmacol., 236: 16–24.10.1016/j.taap.2008.12.023Search in Google Scholar

Connor E.E., Mwamuka J., Gole A., Murphy C.J., Wyatt M.D. (2005). Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small, 1: 325–327.10.1002/smll.200400093Search in Google Scholar

Dobrovolskaia M.A., Patri A.K., Zheng J., Flogston J.D., Ayub N., Aggarwal P. (2009). Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. Nanomedicine, 5: 106–117.10.1016/j.nano.2008.08.001Search in Google Scholar

Dykman L., Khlebtsov N. (2017). Immunological properties of gold nanoparticles. Chem. Sci., 8: 1719–1735.10.1039/C6SC03631GSearch in Google Scholar

Gay C.A., Gębicki J.M. (2002). Perchloric acid enhances sensitivity and reproducibility of the ferric-xylenol orange peroxide assay. Anal. Biochem., 304: 42–46.10.1006/abio.2001.5566Search in Google Scholar

Gianini E.G., Testa R., Savarino V. (2005). Liver enzyme alterations: a guide for clinicians. CMAJ, 271: 367–379.10.1503/cmaj.1040752Search in Google Scholar

Jia H.Y., Liu Y., Zhang X.J., Han L., Du L.B., Tian Q., Xu Y.C. (2009). Potential oxidative stress of gold nanoparticles by induced-NO releasing in serum. J. Am. Chem. Soc., 131: 40–41.10.1021/ja808033wSearch in Google Scholar

Jo M.R., Bae S.H., Go M.R., Kim H.J., Hwang Z.G., Choi S.J. (2015). Toxicity and biokinetics of colloidal gold nanoparticles. Nanomaterials, 5: 835–850.10.3390/nano5020835Search in Google Scholar

Jovanović B., Palić D. (2012). Immunotoxicology of non-functionalized engineered nanoparticles in aquatic organisms with special emphasis on fish – review of current knowledge, gap identification, and call for further research. Aquatic Toxicol., 118/119: 141–151.10.1016/j.aquatox.2012.04.005Search in Google Scholar

Kasarala G., Tillmann M.D. (2016). Standard liver tests. Clin. Liver Dis., 8: 13–18.10.1002/cld.562Search in Google Scholar

Lasagna-Reeves C., Gonzalez-Romero D., Barria M.A., Olmedo I., Clos A., Ra-manujam V.M.S.A., Urayama A., Vergara L., Kogan M.J., Soto C. (2010). Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. Bioch. Bioph. Res. Comm., 393: 649–655.10.1016/j.bbrc.2010.02.046Search in Google Scholar

Leroy P., Sapin-Minet A., Pitarch A., Boudier A., Tournebize J. (2011). Interaction between gold nanoparticles and macrophages: activation or inhibition? Nitric Oxide, 25: 54–56.10.1016/j.niox.2011.04.01221569860Search in Google Scholar

Li X., Robinson S.M., Gupta A., Saha K., Jiang Z., Moyano D.F., Sahar A., Ri-ley M.A., Rotello V.M. (2014). Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano, 8: 10682–10686.10.1021/nn5042625Search in Google Scholar

Lis K. (2012). Erythrocyte sedimentation rate in the past and present day (in Polish). J. Lab. Diag., 48: 213–218.Search in Google Scholar

Maj S. (2000). Drug-induced blood dyscrasias (in Polish). Post. Nauk Med., 4: 17–28.Search in Google Scholar

Małaczewska J. (2015). Effect of oral administration of commercial gold nanocolloid on peripheral blood leukocytes in mice. Pol. J. Vet. Sci., 18: 273–282.10.1515/pjvs-2015-0036Search in Google Scholar

Nel A., Xia T., Mädler L., Li N. (2006). Toxic potential of materials at the nanolevel. Science, 311: 622–627.10.1126/science.1114397Search in Google Scholar

Nelson B.C., Petersen E.J., Marquis B.J., Atha D.H., Elliott J.T., Cleveland D., Watson S.S., Tseng I.H., Dillon A., Theodore M., Jackman J. (2013). NIST gold nanoparticle reference materials do not induce oxidative DNA damage. Nanotoxicology, 7: 21–29.10.3109/17435390.2011.626537Search in Google Scholar

Ognik K., Cholewińska E., Czech A., Kozłowski K., Wlazło Ł., Nowakowicz-Dębek B., Szlązak R., Tutaj K. (2016). Effect of silver nanoparticles on the immune, redox, and lipid status of chicken blood. Czech J. Anim. Sci., 61: 450–461.10.17221/80/2015-CJASSearch in Google Scholar

Pan Y., Leifert A., Ruau D., Neuss S., Bornemann J., Schmid G., Brandau W., Si-mon U., Jahnen-Dechen W. (2009). Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small, 5: 2067–2076.10.1002/smll.200900466Search in Google Scholar

Pineda L., Sawosz E., Hotowy A., Elnif J., Sawosz F., Ali A., Chwalibog A. (2012). Effect of nanoparticles of silver and gold on metabolic rate and development of broiler and layer embryos. Comp. Bioch. Physiol., Part A, 161: 315–319.10.1016/j.cbpa.2011.11.013Search in Google Scholar

Salih M., Smith D.M., Price J.F., Dawson L.E. (1987). Modified extraction 2-thiobarbituric acid method for measuring lipid oxidation in poultry. Poultry Sci., 66: 1483–1488.10.3382/ps.0661483Search in Google Scholar

Saptarshi S.R., Duschl A., Lopata A.L. (2013). Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticles. J. Nanobiotechnol., 11: 26.10.1186/1477-3155-11-26Search in Google Scholar

Sarkar A., Ghosh M., Sil P.C. (2014). Nanotoxicity: Oxidative stress mediated toxicity of metal and metal oxide nanoparticles. J. Nanosci. Nanotechnol., 14: 730–743.10.1166/jnn.2014.8752Search in Google Scholar

Sawosz E., Grodzik M., Lisowski P., Zwierzchowski L., Niemiec T., Szmidt M., Chwalibog A. (2010). Influence of hydrocolloids of Ag, Au, and Ag/Cu alloy nanoparticles on the inflammatory state at transcriptional level. Bull. Vet. Inst. Pulawy, 54: 81–85.Search in Google Scholar

Schrand A.M., Braydich-Stolle L.K., Schlager J.J., Dai L., Hussain S.M. (2008). Can silver nanoparticles be useful as potential biological labels? Nanotechnology, 19: 1–13.10.1088/0957-4484/19/23/23510421825779Search in Google Scholar

Sembratowicz I., Ognik K. (2018). Immunotropic activity of gold nanocolloid in chickens. J. Trace El. Med. Biol., 47: 98–103.10.1016/j.jtemb.2018.02.006Search in Google Scholar

Sembratowicz I., Ognik K., Stępniowska A. (2016). An evaluation of in vitro intestinal absorption of iron, calcium and potassium in chickens receiving gold nanoparticles. Brit. Poultry Sci., 57: 559–565.10.1080/00071668.2016.1187713Search in Google Scholar

Sengupta J., Datta P., Patra H.K., Dasgupta A.K., Gomes A. (2013). In vivo interaction of gold nanoparticles after acute and chronic exposure in experimental animal models. J. Nanosci. Nanotechnol., 13: 1660–1670.10.1166/jnn.2013.7113Search in Google Scholar

Shamaila S., Zafer N., Riaz S., Shariff R., Nazir J., Naseem S. (2014). Gold nanoparticles: an efficient antimicrobial agent against enteric human bacterial pathogens. Nanomaterials, 6: 71.10.3390/nano6040071Search in Google Scholar

Shukla R., Bansal V., Chaudhary M., Basu A., Bhonde R.R., Sastry M. (2005). Bio-compatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir, 21: 10644–10654.10.1021/la0513712Search in Google Scholar

Siddiqi K.S., Husen A. (2017). Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system. J. Trace El. Med. Biol., 40: 10–23.10.1016/j.jtemb.2016.11.012Search in Google Scholar

Smulikowska S., Rutkowski A. (2005). Nutrient requirements of poultry, 4th rev. ed. (in Polish). The Kielanowski Institue of Anim. Physiol. Nutr. PAS.Search in Google Scholar

Sumbayev V.V., Yasinska I.M., Garcia C.P., Gilliland D., Lall G.S., Gibbs B.F., Bonsall D.R., Varani L., Rossi F., Calzolai L. (2013). Gold nanoparticles downregulate interleukin-1β-induced pro-inflammatory responses. Small, 9: 472–477.10.1002/smll.201201528Search in Google Scholar

Surekha K. (2017). Gold nanoparticles: their application as antimicrobial agents and vehicles of gene delivery. Adv. Biotechnol. Microbiol., 4: 555658.Search in Google Scholar

Unfried K., Albrecht C., Klotz L.O., Mikecz A., Grether-Beck S., Schins R.P.F. (2007). Cellular responses to nanoparticles: target structures and mechanisms. Nanotoxicology, 1: 52–71.10.1080/00222930701314932Search in Google Scholar

Valchev I., Kanakov D., Hristov T., Lazarov L., Binev R., Grozeva N., Niko-lov Y. (2014). Effects of experimental aflatoxicosis on renal function in broiler chickens. Bulg. J. Vet. Med., 17: 314–324.Search in Google Scholar

Wiwanitkit V., Sereemaspun A., Rojanathanes R. (2010). Identification of gold nanoparticle in lymphocytes: a confirmation of direct intracellular penetration effect. Turk. J. Hematol., 26: 28–30.Search in Google Scholar

Xu Y., Tang H., Liu J.H., Wang H., Liu Y. (2013). Evaluation of the adjuvant effect of silver nanoparticles both in vitro and in vivo. Toxicol. Lett., 219: 42–48.10.1016/j.toxlet.2013.02.010Search in Google Scholar

Yah C.S. (2013). The toxicity of gold nanoparticles in relation to their physicochemical properties. Biomed. Res., 24: 400–413.Search in Google Scholar

Yang H., Du L., Tian X., Fan Z., Sun C., Liu Y. (2014). Effects of nanoparticle size and gestational age on maternal biodistribution and toxicity of gold nanoparticles in pregnant mice. Toxicol. Lett., 230: 10–18.10.1016/j.toxlet.2014.07.030Search in Google Scholar

Zhang X.D., Wu H.Y., Wu D., Wang X.Y., Chang J.H., Zhai Z.B., Meng A.M., Liu P.X., Zhang L.A., Fan F.Y. (2010). Toxicologic effects of gold nanoparticles in vivo by different administration routes. Int J. Nanomed., 5: 771–781.10.2147/IJN.S8428Search in Google Scholar

Zhang X.D., Wu D., Shen X., Liu P.X., Yang N., Zhao B., Zhang H., Sun Y.M., Zhang L., Fan F.Y. (2011). Size-dependent in vivo toxicity of PEG coated gold nanoparticles. Int. J. Nanomed., 6: 2071–2081.10.2147/IJN.S21657Search in Google Scholar

Ziaee Ghahnavieh M., Ajdary M., Ziaee Ghahnavieh M., Naghsh N. (2014). Effects of intraperitoneal injection of gold nanoparticles in male mice. Nanomed. J., 1: 121–127.Search in Google Scholar

Zielińska M., Sawosz E., Grodzik M., Balcerak M., Wierzbicki M., Skomiał J., Sawosz F., Chwalibog A. (2011 a). Effect of taurine and gold nanoparticles on the morphological and molecular characteristics of muscle development during chicken embryogenesis. Arch. Anim. Nutr., 66: 1–13.10.1080/1745039X.2011.64491822397092Search in Google Scholar

Zielińska M., Sawosz E., Grodzik M., Wierzbicki M., Gromadka M., Hotowy A., Sawosz F., Lozicki A., Chwalibog A. (2011 b). Effect of heparan sulfate and gold nanoparticles on muscle development during embryogenesis. Int. J. Nanomed., 6: 3163–3172.10.2147/IJN.S26070325426222238506Search in Google Scholar

Zolnik B.S., González-Fernández Á., Sadrieh N., Dobrovolskaia M.A. (2010). Nanoparticles and the immune system. Endocrinology, 151: 458–465.10.1210/en.2009-1082Search in Google Scholar

eISSN:
2300-8733
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine