Acceso abierto

The Phase–Space Approach to time Evolution of Quantum States in Confined Systems: the Spectral Split–Operator Method

International Journal of Applied Mathematics and Computer Science's Cover Image
International Journal of Applied Mathematics and Computer Science
Information Technology for Systems Research (special section, pp. 427-515), Piotr Kulczycki, Janusz Kacprzyk, László T. Kóczy, Radko Mesiar (Eds.)

Cite

Baker, G.A. (1958). Formulation of quantum mechanics based on the quasi-probability distribution induced on phase space, Physical Review109(6): 2198–2206, DOI: 10.1103/PhysRev.109.2198.10.1103/PhysRev.109.2198Open DOISearch in Google Scholar

Balazs, N.L. and Jennings, B.K. (1984). Wigner’s function and other distribution functions on Mock phase spaces, Physics Reports104(6): 347–391, DOI: 10.1016/0370-1573(84)90151-0.10.1016/0370-1573(84)90151-0Open DOISearch in Google Scholar

Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A. and Sternheimer, D. (1977). Quantum mechanics as a deformation of classical mechanics, Letters in Mathematical Physics1(6): 521–530, DOI: 10.1007/BF00399745.10.1007/BF00399745Open DOISearch in Google Scholar

Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A. and Sternheimer, D. (1978a). Deformation theory and quantization. I: Deformation of symplectic structures, Annals of Physics111(1): 61–110, DOI: 10.1016/0003-4916(78)90224-5.10.1016/0003-4916(78)90224-5Open DOISearch in Google Scholar

Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A. and Sternheimer, D. (1978b). Deformation theory and quantization. II: Physical applications, Annals of Physics111(1): 111–151, DOI: 10.1016/0003-4916(78)90225-7.10.1016/0003-4916(78)90225-7Open DOISearch in Google Scholar

Benedict, M.G. and Czirják, A. (1999). Wigner functions, squeezing properties, and slow decoherence of a mesoscopic superposition of two-level atoms, Physical Review A60(5): 4034–4044, DOI: 10.1103/PhysRevA.60.4034.10.1103/PhysRevA.60.4034Open DOISearch in Google Scholar

Berkovitz, L.D. (1974). Optimal Control Theory, Springer-Verlag, New York, NY.10.1007/978-1-4757-6097-2Search in Google Scholar

Błaszak, M. and Domański, Z. (2010). Phase space quantum mechanics, Annals of Physics327(2): 167–211, DOI: 10.1016/j.aop.2011.09.006.10.1016/j.aop.2011.09.006Open DOISearch in Google Scholar

Bondar, D.I., Cabrera, R., Zhdanov, D.V. and Rabitz, H.A. (2013). Wigner phase-space distribution as a wave function, Physical Review A88(5): 052108–1–052108–6, DOI: 10.1103/PhysRevA.88.052108.10.1103/PhysRevA.88.052108Search in Google Scholar

Castellani, L. (2000). Non-commutative geometry and physics: A review of selected recent results, Classical and Quantum Gravity17(17): 3377–3401, DOI: 10.1088/0264-9381/17/17/301.10.1088/0264-9381/17/17/301Open DOISearch in Google Scholar

Chin, S.A. (1997). Symplectic integrators from composite operator factorizations, Physics Letters A226(6): 344–348, DOI: 10.1016/S0375-9601(97)00003-0.10.1016/S0375-9601(97)00003-0Open DOISearch in Google Scholar

Chin, S.A. and Chen, C.R. (2002). Gradient symplectic algorithms for solving the Schrödinger equation with time-dependent potentials, The Journal of Chemical Physics117(4): 1409–1415, DOI: 10.1063/1.1485725.10.1063/1.1485725Open DOISearch in Google Scholar

Ciurla, M., Adamowski, J., Szafran, B. and Bednarek, S. (2002). Modelling of confinement potentials in quantum dots, Physica E: Low-dimensional Systems and Nanostructures15(4): 261–268, DOI: 10.1016/S1386-9477(02)00572-6.10.1016/S1386-9477(02)00572-6Open DOISearch in Google Scholar

Curtright, T.L. and Zachos, C.K. (2012). Quantum mechanics in phase space, Asia-Pacific Physics Newsletter1(1): 37–46, DOI: 10.1142/S2251158X12000069.10.1142/S2251158X12000069Open DOISearch in Google Scholar

Dattoli, G., Giannessi, L., Ottaviani, P.L. and Torre, A. (1995). Split-operator technique and solution of Liouville propagation equations, Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics51(1): 821–824, DOI: 10.1103/PhysRevE.51.821.10.1103/PhysRevE.51.821Open DOISearch in Google Scholar

Delius, G.W. and Hüffmann, A. (1996). On quantum Lie algebras and quantum root systems, Journal of Physics A: Mathematical and General29(8): 1703–1722, DOI: 10.1088/0305-4470/29/8/018.10.1088/0305-4470/29/8/018Search in Google Scholar

Feit, M.D., Fleck, J.A. and Steiger, A. (1982). Solution of the Schrödinger equation by a spectral method, Journal of Computational Physics47(3): 412–433, DOI: 10.1016/0021-9991(82)90091-2.10.1016/0021-9991(82)90091-2Open DOISearch in Google Scholar

Gómez, E.A., Thirumuruganandham, S.P. and Santana, A. (2014). Split-operator technique for propagating phase space functions: Exploring chaotic, dissipative and relativistic dynamics, Computer Physics Communications185(1): 136–143, DOI: 10.1016/j.cpc.2013.08.025.10.1016/j.cpc.2013.08.025Open DOISearch in Google Scholar

Hiley, B.J. (2015). On the relationship between the Wigner–Moyal approach and the quantum operator algebra of von Neumann, Journal of Computational Electronics14(4): 869–878, DOI: 10.1007/s10825-015-0728-7.10.1007/s10825-015-0728-7Open DOISearch in Google Scholar

Hillery, M., O’Connell, R.F., Scully, M.O. and Wigner, E.P. (1984). Distribution functions in physics: Fundamentals, Physics Reports106(3): 121–167, DOI: 10.1016/0370-1573(84)90160-1.10.1016/0370-1573(84)90160-1Open DOISearch in Google Scholar

Isar, A. and Scheid, W. (2004). Deformation of quantum oscillator and of its interaction with environment, Physica A: Statistical Mechanics and Its Applications335(1–2): 79–93, DOI: 10.1016/j.physa.2003.12.017.10.1016/j.physa.2003.12.017Open DOISearch in Google Scholar

Kaczor, U., Klimas, B., Szydłowski, D., Wołoszyn, M. and Spisak, B. (2016). Phase-space description of the coherent state dynamics in a small one-dimensional system, Open Physics14(1): 354–359, DOI: 10.1515/phys-2016-0036.10.1515/phys-2016-0036Open DOISearch in Google Scholar

Kenfack, A. (2016). Comment on Nonclassicality indicator for the real phase-space distribution functions, Physical Review A93(3): 036101-1–036101-2, DOI: 10.1103/PhysRevA.93.036101.10.1103/PhysRevA.93.036101Search in Google Scholar

Kenfack, A. and ˙Zyczkowski, K. (2004). Negativity of the Wigner function as an indicator of non-classicality, Journal of Optics B Quantum and Semiclassical Optics6(10): 396–404, DOI: 10.1088/1464-4266/6/10/003.10.1088/1464-4266/6/10/003Open DOISearch in Google Scholar

Khademi, S., Sadeghi, P. and Nasiri, S. (2016). Reply to Comment on Nonclassicality indicator for the real phase-space distribution functions, Physical Review A93(3): 036102-1–036102-2, DOI: 10.1103/PhysRevA.93.036102.10.1103/PhysRevA.93.036102Search in Google Scholar

Kołaczek, D., Spisak, B.J. and Wołoszyn, M. (2018). Phase-space approach to time evolution of quantum states in confined systems. The spectral split-operator method, in P. Kulczycki et al. (Eds), Contemporary Computational Science, AGH-UST Press, Cracow, p. 5.Search in Google Scholar

Kołaczek, D., Spisak, B.J. and Wołoszyn, M. (2020). Phase-space approach to time evolution of quantum states in confined systems. The spectral split-operator method, in P. Kulczycki et al. (Eds), Information Technology, Systems Research, and Computational Physics, Springer, Cham, pp. 307–320.10.1007/978-3-030-18058-4_24Search in Google Scholar

Kubo, R. (1964). Wigner representation of quantum operators and its applications to electrons in a magnetic field, Journal of the Physical Society of Japan19(11): 2127–2139, DOI: 10.1143/JPSJ.19.2127.10.1143/JPSJ.19.2127Open DOISearch in Google Scholar

Lechner, G. (2011). Deformations of quantum field theories and integrable models, Communications in Mathematical Physics312(1): 265–302, DOI: 10.1007/s00220-011-1390-y.10.1007/s00220-011-1390-yOpen DOISearch in Google Scholar

Lee, H.-W. (1995). Theory and application of the quantum phase-space distribution functions, Physics Reports259(3): 147–211, DOI: 10.1016/0370-1573(95)00007-4.10.1016/0370-1573(95)00007-4Open DOISearch in Google Scholar

Leung, B. and Prodan, E. (2013). A non-commutative formula for the isotropic magneto-electric response, Journal of Physics A: Mathematical and Theoretical46(15): 085205-1–085205-14, DOI: 10.1088/1751-8113/46/8/085205.10.1088/1751-8113/46/8/085205Search in Google Scholar

Luenberger, D.G. (1979). Introduction to Dynamic Systems, Theory, Models, and Applications, John Wiley & Sons, Inc., New York, NY.Search in Google Scholar

Ozorio de Almeida, A.M. (1998). The Weyl representation in classical and quantum mechanics, Physics Reports295(6): 265–342, DOI: 10.1016/S0370-1573(97)00070-7.10.1016/S0370-1573(97)00070-7Open DOISearch in Google Scholar

Polderman, J.W. and Willems, J.C. (1998). Introduction to Mathematical Systems Theory. A Behavioral Approach, Springer-Verlag, New York, NY.10.1007/978-1-4757-2953-5Search in Google Scholar

Pool, J.C.T. (1966). Mathematical aspects of the Weyl correspondence, Journal of Mathematical Physics7(1): 66–76, DOI: 10.1063/1.1704817.10.1063/1.1704817Open DOISearch in Google Scholar

Sadeghi, P., Khademi, S. and Nasiri, S. (2010). Nonclassicality indicator for the real phase-space distribution functions, Physical Review A83(1): 012102-1–012102-8, DOI: 10.1103/PhysRevA.82.012102.10.1103/PhysRevA.82.012102Search in Google Scholar

Sontag, E.D. (1990). Mathematical Control Theory. Deterministic Finite Dimensional Systems, Springer-Verlag, New York, NY.10.1007/978-1-4684-0374-9Search in Google Scholar

Tatarskiĭ, V.I. (1983). The Wigner representation of quantum mechanics, Soviet Physics Uspekhi26(4): 311–327, DOI: 10.1070/PU1983v026n04ABEH004345.10.1070/PU1983v026n04ABEH004345Open DOISearch in Google Scholar

Ter Haar, D. (1961). Theory and applications of the density matrix, Reports on Progress in Physics24(1): 304–362, DOI: 10.1088/0034-4885/24/1/307.10.1088/0034-4885/24/1/307Open DOISearch in Google Scholar

Torres-Vega, G. and Frederick, J.H. (1982). Numerical method for the propagation of quantum-mechanical wave functions in phase space, Physical Review Letters67(19): 2601–2604, DOI: 10.1103/PhysRevLett.67.2601.10.1103/PhysRevLett.67.260110044470Open DOISearch in Google Scholar

Walker, J.A. (1980). Dynamical Systems and Evolution Equations. Theory and Applications, Plenum Press, New York, NY.10.1007/978-1-4684-1036-5Search in Google Scholar

Wigner, E. (1932). On the quantum correction for thermodynamic equilibrium, Physical Review40(5): 749–759, DOI: 10.1103/PhysRev.40.749.10.1103/PhysRev.40.749Open DOISearch in Google Scholar

Xue, Y. and Prodan, E. (2012). The noncommutative Kubo formula: Applications to transport in disordered topological insulators with and without magnetic fields, Physical Review. B: Condensed Matter86(15): 155445-1–155445-17, DOI: 10.1103/PhysRevB.86.155445.10.1103/PhysRevB.86.155445Search in Google Scholar

eISSN:
2083-8492
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Mathematics, Applied Mathematics