Acceso abierto

Stress Concentration at Load-Carrying Fillet Welded Cruciform Joints Subjected to Tensile and Bending Loads


Cite

1. Chattopadhyay A, Glinka G, El-Zein M, Qian J, Formas R. (2011), Stress analysis and fatigue of welded structures, Weld World, 55(7–8), 2–21.10.1007/BF03321303Search in Google Scholar

2. Chung HY., Liu SH., Lin RS., Ju SH. (2008), Assessment of stress intensity factors for load-carrying fillet welded cruciform joints using a digital camera, Int. Journal of Fatigue, 30(10–11), 1861-1872.Search in Google Scholar

3. Dong P. (2001), A structural stress definition and numerical implementation for fatigue analysis of welded joints, Int. Journal of Fatigue, 23(10), 865–876.10.1016/S0142-1123(01)00055-XSearch in Google Scholar

4. European Committee for Standardization (CES) (2005), Eurocode 3: Design of steel structures - Part 1–9, Fatigue, Brussels: CES; EN 1993-1-9:2005.Search in Google Scholar

5. Fayard JL., Bignonnet A. and Dang Van K. (1996), Fatigue design criteria for welded structures, Fatigue Fracture Eng. Materials & Structures, 19(6), 723–729.Search in Google Scholar

6. Fricke W. (2012), IIW Recommendations for the Fatigue Assessment of Welded Structures by Notch Stress Analysis: IIW-2006-09, Woodhead Publishing Series in Welding and Other Joining Technologies, 2-41.10.1533/9780857098566.3Search in Google Scholar

7. Fricke, W. (2013), IIW guideline for the assessment of weld root fatigue, Weld World, 57, 753.10.1007/s40194-013-0066-ySearch in Google Scholar

8. Hobbacher A.F. (2009), The new IIW recommendations for fatigue assessment of welded joints and components – A comprehensive code recently updated, International Journal of Fatigue, 31, 50–58.10.1016/j.ijfatigue.2008.04.002Search in Google Scholar

9. Iida K., Uemura T., (1996), Stress concentration factor formulas widely used in Japan, Fatigue Fract Eng Mater Struct., 19(6), 779–786.Search in Google Scholar

10. ISO 9692-1 (2013) Welding and allied processes — Types of joint preparation — Part 1: Manual metal arc welding, gas-shielded metal arc welding, gas welding, TIG welding and beam welding of steels.Search in Google Scholar

11. Kranz B., Sonsino C.M. (2010), Verification of FAT Values for the Application of the Notch Stress Concept with the Reference Radii Rref = 1.00 and 0.05 mm, Weld World, 54(7-8), 218-224.10.1007/BF03263507Search in Google Scholar

12. Livieri P., Lazzarin, P. (2005), Fatigue strength of steel and aluminium welded joints based on generalised stress intensity factors and local strain energy values, Int. Journal of Fracture, 133(3), 247-276.10.1007/s10704-005-4043-3Search in Google Scholar

13. Lotsberg I., Sigurdsson G. (2006), Hot Spot Stress S-N Curve for Fatigue Analysis of Plated Structures, J. Offshore Mech. Arct. Eng., 128(4), 330-336.10.1115/1.2355512Search in Google Scholar

14. Molski K.L., Tarasiuk P., Glinka G. (2019), Description of stress concentration at tee welded joints subjected to tensile and bending loads, Opole University of Technology, Oficyna Wydawnicza, Studia i Monografie, 516, 61–80 (in Polish).Search in Google Scholar

15. Monahan C.C. (1995), Early fatigue cracks growth at welds, Computational Mechanics Publications, Southampton,Search in Google Scholar

16. Niemi E., Fricke W. Maddox S. J. (2018), Structural Hot-Spot Stress Approach to Fatigue Analysis of Welded Components, https://doi.org/10.1007/978-981-10-5568-3.10.1007/978-981-10-5568-3Search in Google Scholar

17. Peterson R.E. (1974), Stress concentration design factors, 2nd ed., Wiley, New York.Search in Google Scholar

18. Radaj D., Sonsino CM., Fricke W. (2009), Recent developments in local concepts of fatigue assessment of welded joints, International Journal of Fatigue, 31(1), 2–11.10.1016/j.ijfatigue.2008.05.019Search in Google Scholar

19. Remes, H., Varsta, P. (2010), Statistics of Weld Geometry for Laser-Hybrid Welded Joints and its Application within Notch Stress Approach, Weld World, 54(7-8), 189-207.10.1007/BF03263505Search in Google Scholar

20. Schijve J. (2012), Fatigue predictions of welded joints and the effective notch stress concept, International Journal of Fatigue, 45, 31–38.10.1016/j.ijfatigue.2012.06.016Search in Google Scholar

21. Singh P.J., Achar D.R.G., Guha B., Nordberg H. (2002), Influence of weld geometry and process on fatigue crack growth characteristics of AISI 304L cruciform joints containing lack of penetration defects, Sci. Technol. Weld Join., 7(5), 306–312.10.1080/174329313X13789830157465Search in Google Scholar

22. Singh P.J., Guha B., Achar D.R.G. (2003), Fatigue life prediction using two stage model for AISI 304L cruciform joints, with different fillet geometry, failing at toe, Sci. Technol. Weld. Join., 8(1), 69–75.10.1179/136217103225008928Search in Google Scholar

23. Sonsino C.M., Fricke W, de Bruyne F., Hoppe A., Ahmadi A., Zhang G. (2012), Notch stress concepts for the fatigue assessment of welded joints – Background and applications, Int. Journal of Fatigue, 34(1), 2–16.10.1016/j.ijfatigue.2010.04.011Search in Google Scholar

24. Stenberg T., Barsoum Z., Balawi S.O.M. (2015), Comparison of local stress based concepts — Effects of low-and high cycle fatigue and weld quality, Engineering Failure Analysis, 57, 323–333.10.1016/j.engfailanal.2015.07.022Search in Google Scholar

25. Tchoffo Ngoula D., Beier H. Th., Vormwald M. (2017), Fatigue crack growth in cruciform welded joints: Influence of residual stresses and of the weld toe geometry, International Journal of Fatigue, 101(2), 253-262.10.1016/j.ijfatigue.2016.09.020Search in Google Scholar

26. Tsuji I. (1990), Estimation of stress concentration factor at weld toe of non-load carrying fillet welded joints, Trans West Jpn Soc Naval Architects, 80, 241–251.Search in Google Scholar

27. Ushirokawa O., Nakayama E. (1983), Stress concentration factor at welded joints, Ishikawajima–Harima Eng. Rev., 23(4), 351–355.Search in Google Scholar

28. Wooryong P., Chitoshi M. (2008), Fatigue assessment of large-size welded joints based on the effective notch stress approach, International Journal of Fatigue, 30(9), 1556-1568.10.1016/j.ijfatigue.2007.11.012Search in Google Scholar

29. Young J.Y., Lawrence F.V. (1985), Analytical and graphical aids for the fatigue design of weldments, Fatigue Fracture Eng Mater Struct., 8(3), 223–241.Search in Google Scholar

30. Zerbst U., Madia M., Schork B. (2016), Fracture mechanics based determination of the fatigue strength of weldments, Procedia Structural Integrity, 1, 10-17.10.1016/j.prostr.2016.02.003Search in Google Scholar