Acceso abierto

Synthesis and evaluation of bisulfate/mesylate-conjugated chlortetracycline with high solubility and bioavailability


Cite

1. B. M. Duggar, Aureomycin – a product of the continuing search for new antibiotics, Ann. N.Y. Acad. Sci.51 (1948) 177–181; https://doi.org/10.1111/j.1749-6632.1948.tb27262.x10.1111/j.1749-6632.1948.tb27262.xSearch in Google Scholar

2. T. H. Jukes, Some historical notes on chlortetracycline, J. Infect. Dis.7 (1985) 702–707; https://doi.org/10.1093/clinids/7.5.70210.1093/clinids/7.5.702Search in Google Scholar

3. A. Garmyn, M. Vereecken, K. Degussem, W. Depondt, F. Haesebrouck and A. Martel, Efficacy of tiamulin alone or in combination with chlortetracycline against experimental Mycoplasma gallisepticum infection in chickens, Poult Sci.96 (2017) 3367–3374; https://doi.org/10.3382/ps/pex10510.3382/ps/pex105Search in Google Scholar

4. X. Wu, Y. Wei, J. Zheng, X. Zhao and W. Zhong, The behavior of tetracyclines and their degradation products during swine manure composting, Bioresour. Technol.102 (2011) 5924–5931; https://doi.org/10.1016/j.biortech.2011.03.00710.1016/j.biortech.2011.03.007Search in Google Scholar

5. A. Gajda and A. Posyniak, Liquid chromatography – tandem mass spectrometry method for the determination of ten tetracycline residues in muscle samples, Bull. Vet. Pulawy.59 (2015) 345–352; https://doi.org/10.1515/bvip-2015-005110.1515/bvip-2015-0051Search in Google Scholar

6. H. H. E. Williams, M. D. Tokach, S. S. Dritz, J. C. Woodworth, J. M. DeRouchey, R. G. Amachawadi, T. G. Nagaraja and R. D. Goodband, Effects of feeding probiotic or chlortetracycline or a combination on nursery pig growth performance, J. Anim. Sci.95 (2017) 81–82; https://doi.org/10.2527/asasmw.2017.12.17210.2527/asasmw.2017.12.172Search in Google Scholar

7. E. R. Campagnolo, K. R. Johnson, A. Karpati, C. S. Rubin, D. W. Kolpin, M. T. Meyer, J. E. Esteban, R. W. Currier, K. Smith, K. M. Thu and M. McGeehin, Antimicrobial residues in animal waste and water resources proximal to large-scale swine and poultry feeding operations, Sci. Total. Environ.299 (2002) 89–95; https://doi.org/10.1016/s0048-9697(02)00233-410.1016/S0048-9697(02)00233-4Search in Google Scholar

8. D. P. Elder, R. Holm and H. L. de Diego, Use of pharmaceutical salts and cocrystals to address the issue of poor solubility, Int. J. Pharm.453 (2013) 88–100; https://doi.org/10.1016/j.ijpharm.2012.11.02810.1016/j.ijpharm.2012.11.02823182973Search in Google Scholar

9. N. Parisi, P. J. Matts, R. Lever, J. Hadgraft and M. E. Lane, Preparation and characterisation of hexamidine salts, Int. J. Pharm.493 (2015) 404–411; https://doi.org/10.1016/j.ijpharm.2015.07.07110.1016/j.ijpharm.2015.07.07126235920Search in Google Scholar

10. C. Florindo, A. Costa, C. Matos, S. L. Nunes, A. N. Matias, C. M. M. Duarte, L. P. N. Rebelo, L. C. Branco and I. M. Marrucho, Novel organic salts based on fluoroquinolone drugs: Synthesis, bioavailability and toxicological profiles, Int. J. Pharm.469 (2014) 179–189; https://doi.org/10.1016/j.ijpharm.2014.04.03410.1016/j.ijpharm.2014.04.03424746413Search in Google Scholar

11. W. Guerra, E. D. Azevedo, A. R. D. Monteiro, M. Bucciarelli-Rodriguez, E. Chartone-Souza, A. M. A. Nascimento, A. P. S. Fontes, L. Le Moyec and E. C. Pereira-Maia, Synthesis, characterization, and antibacterial activity of three palladium(II) complexes of tetracyclines, J. Inorg. Biochem.99 (2005) 2348–2354; https://doi.org/10.1016/j.jinorgbio.2005.09.00110.1016/j.jinorgbio.2005.09.001Search in Google Scholar

12. D. Fernandez-Calvino, A. Bermudez-Couso, M. Arias-Estevez, J. C. Novoa-Munoz, M. J. FernandezSanjurjo, E. Alvarez-Rodriguez and A. Nunez-Delgado, Kinetics of tetracycline, oxytetracycline, and chlortetracycline adsorption and desorption on two acid soils, Environ. Sci. Pollut. Res.22 (2015) 425–433; https://doi.org/10.1007/s11356-014-3367-910.1007/s11356-014-3367-9Search in Google Scholar

13. S. Aitipamula, A. B. H. Wong, P. S. Chow and R. B. H. Tan, Pharmaceutical Salts of Haloperidol with Some Carboxylic Acids and Artificial Sweeteners: Hydrate Formation, Polymorphism, and Physicochemical Properties, Cryst. Growth Des.14 (2014) 2542–2556; https://doi.org/10.1021/cg500245e10.1021/cg500245eSearch in Google Scholar

14. A. O. Surov, A. N. Manin, A. P. Voronin, K. V. Drozd, A. A. Simagina, A. V. Churakov and G. L. Perlovich, Pharmaceutical salts of ciprofloxacin with dicarboxylic acids, Eur. J. Pharm. Sci.77 (2015) 112–121; https://doi.org/10.1016/j.ejps.2015.06.00410.1016/j.ejps.2015.06.004Search in Google Scholar

15. G. Zurhelle, M. Petz, E. Mueller-Seitz and E. Siewert, Metabolites of oxytetracycline, tetracycline, and chlortetracycline and their distribution in egg white, egg yolk, and hen plasma, J. Agric. Food. Chem.48 (2000) 6392–6396; https://doi.org/10.1021/jf000141k10.1021/jf000141kSearch in Google Scholar

16. M. Cherlet, M. Schelkens, S. Croubels and P. De Backer, Quantitative multi-residue analysis of tetracyclines and their 4-epimers in pig tissues by high-performance liquid chromatography combined with positive-ion electrospray ionization mass spectrometry, Anal. Chim. Acta.492 (2003) 199–213; https://doi.org/10.1016/s0003-2670(03)00341-610.1016/S0003-2670(03)00341-6Search in Google Scholar

17. A. L. Cinquina, F. Longo, G. Anastasi, L. Giannetti and R. Cozzani, Validation of a high-performance liquid chromatography method for the determination of oxytetracycline, tetracycline, chlortetracycline and doxycycline in bovine milk and muscle, J. Chromatogr. A.987 (2003) 227–233; https://doi.org/10.1016/s0021-9673(02)01446-210.1016/S0021-9673(02)01446-2Search in Google Scholar

18. A. Posyniak, K. Mitrowska, J. Zmudzki and J. Niedzielska, Analytical procedure for the determination of chlortetracycline and 4-epi-chlortetracycline in pig kidneys, J. Chromatogr. A.1088 (2005) 169–174; https://doi.org/10.1016/j.chroma.2005.01.00710.1016/j.chroma.2005.01.00716130747Search in Google Scholar

19. A. Anadon, F. Gamboa, M. Aranzazu Martinez, V. Castellano, M. Martinez, I. Ares, E. Ramos, F. H. Suarez and M. Rosa Martinez-Larranaga, Plasma disposition and tissue depletion of chlortetracycline in the food producing animals, chickens for fattening, Food Chem. Toxicol.50 (2012) 2714–2721; https://doi.org/10.1016/j.fct.2012.05.00710.1016/j.fct.2012.05.00722595330Search in Google Scholar

20. K. Kodimalar, R. A. Rajini, S. Ezhilvalavan and G. Sarathchandra, A survey of chlortetracycline concentration in feed and its residue in chicken egg in commercial layer farms, J. Biosci.39 (2014) 425–431; https://doi.org/10.1007/s12038-014-9425-010.1007/s12038-014-9425-024845506Search in Google Scholar

21. K. Washburn, V. R. Fajt, P. Plummer, J. F. Coetzee, L. W. Wulf and S. Washburn, Pharmacokinetics of oral chlortetracycline in nonpregnant adult ewes, J. Vet. Pharmacol. Ther.37 (2014) 607–610; https://doi.org/10.1111/jvp.1214410.1111/jvp.12144Search in Google Scholar

22. D. A. Bair, I. E. Popova, K. W. Tate and S. J. Parikh, Transport of oxytetracycline, chlortetracycline, and ivermectin in surface runoff from irrigated pasture, J. Environ. Sci. Health, Part B.52 (2017) 631–640; https://doi.org/10.1080/03601234.2017.133006910.1080/03601234.2017.1330069Search in Google Scholar

23. H. S. Chung, Y.-J. Lee, M. M. Rahman, A. M. Abd El-Aty, H. S. Lee, M. H. Kabir, S. Kim, B.-J. Park, J.-E. Kim, F. Hacimuftuoglu, N. Nahar, H.-C. Shin and J.-H. Shim, Uptake of the veterinary antibiotics chlortetracycline, enrofloxacin, and sulphathiazole from soil by radish, Sci. Total Environ.605 (2017) 322–331; https://doi.org/10.1016/j.scitotenv.2017.06.23110.1016/j.scitotenv.2017.06.231Search in Google Scholar

24. C. Schwake-Anduschus and G. Langenkamper, Chlortetracycline and related tetracyclines: detection in wheat and rye grain, J. Sci. Food Agric.98 (2018) 4542–4549; https://doi.org/10.1002/jsfa.898210.1002/jsfa.8982Search in Google Scholar

25. A. Molaei, A. Lakzian, R. Datta, G. Haghnia, A. Astaraei, M. Rasouli-Sadaghiani and M. T. Ceccherini, Impact of chlortetracycline and sulfapyridine antibiotics on soil enzyme activities, Int. Agrophys.31 (2017) 499–505; https://doi.org/10.1515/intag-2016-008410.1515/intag-2016-0084Search in Google Scholar

26. A. F. Casy and A. Yasin, The identification and stereochemical study of tetracycline antibiotics by 1H nuclear magnetic resonance spectroscopy, J. Pharm. Biomed. Anal.1 (1983) 281–292; https://doi.org/10.1016/0731-7085(83)80040-510.1016/0731-7085(83)80040-5Search in Google Scholar

27. Z. Huang, R. Francis, Y. Zha and J. Ruan, Development of a simple method for quantitation of methanesulfonic acid at low ppm level using hydrophilic interaction chromatography coupled with ESI-MS, J. Pharm. Biomed. Anal.102 (2015) 17–24; https://doi.org/10.1016/j.jpba.2014.08.01910.1016/j.jpba.2014.08.019Search in Google Scholar

28. J. Zhu, D. D. Snow, D. A. Cassada, S. J. Monson and R. F. Spalding, Analysis of oxytetracycline, tetracycline, and chlortetracycline in water using solid-phase extraction and liquid chromatographytandem mass spectrometry, J. Chromatogr. A.928 (2001) 177–186; https://doi.org/10.1016/s0021-9673(01)01139-610.1016/S0021-9673(01)01139-6Search in Google Scholar

29. M. H. Khan, H. Bae and J.-Y. Jung, Tetracycline degradation by ozonation in the aqueous phase: Proposed degradation intermediates and pathway, J. Hazard. Mater.181 (2010) 659–665; https://doi.org/10.1016/j.jhazmat.2010.05.06310.1016/j.jhazmat.2010.05.063Search in Google Scholar

30. A. M. Kamel, H. G. Fouda, P. R. Brown and B. Munson, Mass spectral characterization of tetracyclines by electrospray ionization, H/D exchange, and multiple stage mass spectrometry, J. Am. Soc. Mass. Spectrom.13 (2002) 543–557; https://doi.org/10.1016/s1044-0305(02)00356-210.1016/S1044-0305(02)00356-2Search in Google Scholar

31. S. Miyazaki, T. Arita, R. Hori and K. Ito, Effect of polymorphism on dissolution behavior and gastrointestinal absorption of chlortetracycline hydrochloride, Chem. Pharm. Bull.22 (1974) 638–642; https://doi.org/10.1248/cpb.22.63810.1248/cpb.22.638Search in Google Scholar

32. P. Cervini, L. C. Murreli Machado, A. P. Garcia Ferreira, B. Ambrozini and E. T. Gomes Cavalheiro, Thermal decomposition of tetracycline and chlortetracycline, J. Anal. Appl. Pyrolysis.118 (2016) 317–324; https://doi.org/10.1016/j.jaap.2016.02.01510.1016/j.jaap.2016.02.015Search in Google Scholar

33. J. Diana, L. Vandenbosch, B. De Spiegeleer, J. Hoogmartens and E. Adams, Evaluation of the stability of chlortetracycline in granular premixes by monitoring its conversion into degradation products, J. Pharm. Biomed. Anal.39 (2005) 523–530; https://doi.org/10.1016/j.jpba.2005.04.03010.1016/j.jpba.2005.04.030Search in Google Scholar

34. O. Quattrocchi, L. Frisardi, M. Iglesias, M. Noya, M. Caputto, D. Ferraris, D. Siliprandi and E. Piccinni, Ion exchange chromatographic determination of olpadronate, phosphate, phosphite, chloride and methanesulfonic acid, J. Pharm. Biomed. Anal.24 (2001) 1011–1018; https://doi.org/10.1016/s0731-7085(00)00535-510.1016/S0731-7085(00)00535-5Search in Google Scholar

35. S.-I. Ohira and K. Toda, Ion chromatographic measurement of sulfide, methanethiolate, sulfite and sulfate in aqueous and air samples, J. Chromatogr. A.1121 (2006) 280–284; https://doi.org/10.1016/j.chroma.2006.05.07410.1016/j.chroma.2006.05.07416781719Search in Google Scholar

36. M. T. Labro, Immunomodulation by antibacterial agents-Is it clinically relevant, Drugs45 (1993) 319–328; https://doi.org/10.2165/00003495-199345030-0000110.2165/00003495-199345030-000017682903Search in Google Scholar

37. T. Nikolov, K. Berchev and A. Ilkov, Protein pattern in the blood serum of rabbits treated with chlortetracycline, Tr. Vissh. Med. Inst.41 (1962) 41–48.Search in Google Scholar

eISSN:
1846-9558
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Pharmacy, other