Cite

1. Janssens V, Goris J. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J. 2001; 353(Pt 3):417-39.10.1042/bj3530417Search in Google Scholar

2. Janssens V, Goris J, Van Hoof C. PP2A: the expected tumor suppressor. Curr Opin Genet Dev. 2005; 15: 34-41.10.1016/j.gde.2004.12.004Search in Google Scholar

3. Schonthal AH. Role of serine/threonine protein phosphatase 2A in cancer. Cancer Lett.2001; 170:1-13.10.1016/S0304-3835(01)00561-4Search in Google Scholar

4. Lubert EJ, Sarge KD. Interaction between protein phosphatase 2A and members of the importin beta superfamily. Biochem Biophys Res Commun. 2003; 303:908-13.10.1016/S0006-291X(03)00434-0Search in Google Scholar

5. Lad C, Williams NH, Wolfenden R. The rate of hydrolysis of phosphomonoester dianions and the exceptional catalytic proficiencies of protein and inositol phosphatases. Proc Natl Acad Sci USA. 2003; 100:5607-10.10.1073/pnas.0631607100Search in Google Scholar

6. Virshup DM. Protein phosphatase 2A: a panoply of enzymes. Curr Opin Cell Biol. 2000; 12:180-5.10.1016/S0955-0674(99)00074-5Open DOISearch in Google Scholar

7. Eichhorn PJ, Creyghton MP, Bernards R. Protein phosphatase 2A regulatory subunits and cancer. Biochim Biophys Acta. 2009; 1795:1-15.10.1016/j.bbcan.2008.05.00518588945Search in Google Scholar

8. Nakada N, Kuroda K, Kawahara E. Protein phosphatase 2A regulatory subunit Bbeta promotes MAP kinase-mediated migration of A431 cells. Cell Physiol Biochem. 2005; 15:19-28.10.1159/00008363515665512Search in Google Scholar

9. Goodarzi AA, Jonnalagadda JC, Douglas P, Young D, Ye R, Moorhead GB, et al. Autophosphorylation of ataxia-telangiectasia mutated is regulated by protein phosphatase 2A. Embo J. 2004; 23:4451-61.10.1038/sj.emboj.760045552647015510216Open DOISearch in Google Scholar

10. Guo CY, Brautigan DL, Larner JM. ATM-dependent dissociation of B55 regulatory subunit from nuclear PP2A in response to ionizing radiation. J Biol Chem. 2002; 277:4839-44.10.1074/jbc.M11009220011723136Search in Google Scholar

11. Holmes SE, O’Hearn EE, McInnis MG, Gorelick- Feldman DA, Kleiderlein JJ, Callahan C, et al. Expansion of a novel CAG trinucleotide repeat in the 5' region of PPP2R2B is associated with SCA12. Nat Genet.1999; 23:391-2.10.1038/70493Open DOISearch in Google Scholar

12. Holmes SE, O’Hearn E, Margolis RL. Why is SCA12 different from other SCAs? Cytogenet Genome Res. 2003; 100:189-97.10.1159/000072854Open DOISearch in Google Scholar

13. Chun HH, Gatti RA. Ataxia-telangiectasia, an evolving phenotype. DNA Repair (Amst). 2004; 3: 1187-96.10.1016/j.dnarep.2004.04.010Search in Google Scholar

14. Strack S, Zaucha JA, Ebner FF, Colbran RJ, Wadzinski BE. Brain protein phosphatase 2A: developmental regulation and distinct cellular and subcellular localization by B subunits. J Comp Neurol.1998; 392: 515-27.10.1002/(SICI)1096-9861(19980323)392:4<515::AID-CNE8>3.0.CO;2-3Search in Google Scholar

15. Cardinali M, Pietraszkiewicz H, Ensley JF, Robbins KC. Tyrosine phosphorylation as a marker for aberrantly regulated growth-promoting pathways in cell lines derived from head and neck malignancies. Int J Cancer. 1995; 61:98-103.10.1002/ijc.2910610117Search in Google Scholar

16. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia. 2004; 6:1-6.10.1016/S1476-5586(04)80047-2Open DOISearch in Google Scholar

17. Fan CY. Genetic alterations in head and neck cancer: interactions among environmental carcinogens, cell cycle control, and host DNA repair. Curr Oncol Rep. 2001; 3:66-71.10.1007/s11912-001-0045-0Open DOISearch in Google Scholar

18. Wiseman SM, Stoler DL, Anderson GR. The role of genomic instability in the pathogenesis of squamous cell carcinoma of the head and neck. Surg Oncol Clin N Am. 2004; 13:1-11.10.1016/S1055-3207(03)00118-2Open DOISearch in Google Scholar

19. Richards KL, Zhang B, Baggerly KA, Colella S, Lang JC, Schuller DE, et al. Genome-wide hypomethylation in head and neck cancer is more pronounced in HPVnegative tumors and is associated with genomic instability. PLoS One. 2009; 4:e4941.10.1371/journal.pone.0004941Search in Google Scholar

20. Subbalekha K, Pimkhaokham A, Pavasant P, Chindavijak S, Phokaew C, Shuangshoti S, et al. Detection of LINE-1s hypomethylation in oral rinses of oral squamous cell carcinoma patients. Oral Oncol. 2009; 45:184-91.10.1016/j.oraloncology.2008.05.002Search in Google Scholar

21. Ginos MA, Page GP, Michalowicz BS, Patel KJ, Volker SE, Pambuccian SE, et al. Identification of a gene expression signature associated with recurrent disease in squamous cell carcinoma of the head and neck. Cancer Res. 2004; 64:55-63.10.1158/0008-5472.CAN-03-2144Open DOISearch in Google Scholar

22. Pyeon D, Newton MA, Lambert PF, den Boon JA, Sengupta S, Marsit CJ, et al. Fundamental differences in cell cycle deregulation in human papillomaviruspositive and human papillomavirus-negative head/neck and cervical cancers. Cancer Res. 2007; 67: 4605-19.10.1158/0008-5472.CAN-06-3619Search in Google Scholar

23. Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature. 2003; 421:499-506.10.1038/nature01368Search in Google Scholar

24. Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem. 2001; 276: 42462-7.10.1074/jbc.C100466200Search in Google Scholar

25. Yeudall WA, Jakus J, Ensley JF, Robbins KC. Functional characterization of p53 molecules expressed in human squamous cell carcinomas of the head and neck. Mol Carcinog. 1997; 18:89-96.10.1002/(SICI)1098-2744(199702)18:2<89::AID-MC4>3.0.CO;2-LSearch in Google Scholar

26. Young DB, Jonnalagadda J, Gatei M, Jans DA, Meyn S, Khanna KK. Identification of domains of ataxiatelangiectasia mutated required for nuclear localization and chromatin association. J Biol Chem. 2005; 280: 27587-94.10.1074/jbc.M411689200Search in Google Scholar

27. Kim YC, Gerlitz G, Furusawa T, Catez F, Nussenzweig A, Oh KS, et al. Activation of ATM depends on chromatin interactions occurring before induction of DNA damage. Nat Cell Biol. 2009; 11:92-6.10.1038/ncb1817Search in Google Scholar

28. Kurz EU, Lees-Miller SP. DNA damage-induced activation of ATM and ATM-dependent signaling pathways. DNA Repair (Amst). 2004; 3:889-900.10.1016/j.dnarep.2004.03.029Open DOISearch in Google Scholar

29. Shiloh Y. ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer. 2003; 3:155-68.10.1038/nrc1011Open DOISearch in Google Scholar

30. Huang Y, Sen T, Nagpal J, Upadhyay S, Trink B, Ratovitski E, et al. ATM kinase is a master switch for the Delta Np63 alpha phosphorylation/degradation in human head and neck squamous cell cells upon DNA damage. Cell Cycle. 2008; 7:2846-55.10.4161/cc.7.18.6627Search in Google Scholar

31. Meyn MS. Ataxia-telangiectasia, cancer and the pathobiology of the ATM gene. Clin Genet. 1999; 55: 289-304.10.1034/j.1399-0004.1999.550501.x10422797Open DOISearch in Google Scholar

32. Garcia MJ, Benitez J. The Fanconi anaemia/BRCA pathway and cancer susceptibility. Searching for new therapeutic targets. Clin Transl Oncol. 2008; 10:78-84.10.1007/s12094-008-0160-618258506Search in Google Scholar

33. Parikh RA, White JS, Huang X, Schoppy DW, Baysal BE, Baskaran R, et al. Loss of distal 11q is associated with DNA repair deficiency and reduced sensitivity to ionizing radiation in head and neck squamous cell carcinoma. Genes Chromosomes Cancer. 2007; 46:761-75.10.1002/gcc.2046217492757Search in Google Scholar

34. Bolt J, Vo QN, Kim WJ, McWhorter AJ, Thomson J, Hagensee ME, et al. The ATM/p53 pathway is commonly targeted for inactivation in squamous cell carcinoma of the head and neck (SCCHN) by multiple molecular mechanisms. Oral Oncol. 2005; 41:1013-20.10.1016/j.oraloncology.2005.06.00316139561Search in Google Scholar

35. Ai L, Vo QN, Zuo C, Li L, Ling W, Suen JY, et al. Ataxia-telangiectasia-mutated (ATM) gene in head and neck squamous cell carcinoma: promoter hypermethylation with clinical correlation in 100 cases. Cancer Epidemiol Biomarkers Prev. 2004; 13:150-6.10.1158/1055-9965.EPI-082-3Open DOISearch in Google Scholar

36. Kim WJ, Vo QN, Shrivastav M, Lataxes TA, Brown KD. Aberrant methylation of the ATM promoter correlates with increased radiosensitivity in a human colorectal tumor cell line. Oncogene. 2002; 21:3864-71.10.1038/sj.onc.120548512032824Open DOISearch in Google Scholar

37. Roy K, Wang L, Makrigiorgos GM, Price BD. Methylation of the ATM promoter in glioma cells alters ionizing radiation sensitivity. Biochem Biophys Res Commun. 2006; 344:821-6.10.1016/j.bbrc.2006.03.22216631604Search in Google Scholar

38. Zou J, Qiao X, Ye H, Yang Y, Zheng X, Zhao H, et al. Antisense inhibition of ATM gene enhances the radiosensitivity of head and neck squamous cell carcinoma in mice. J Exp Clin Cancer Res. 2008; 27:56.10.1186/1756-9966-27-56258400318950535Search in Google Scholar

39. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 1998; 273:5858-68.10.1074/jbc.273.10.58589488723Search in Google Scholar

40. Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA, Solier S, et al. GammaH2AX and cancer. Nat Rev Cancer. 2008; 8:957-67.10.1038/nrc2523309485619005492Search in Google Scholar

41. Kuo LJ, Yang LX. Gamma-H2AX - a novel biomarker for DNA double-strand breaks. In Vivo. 2008; 22:305-9.Search in Google Scholar

42. Krauss S, Foerster J, Schneider R, Schweiger S. Protein phosphatase 2A and rapamycin regulate the nuclear localization and activity of the transcription factor GLI3. Cancer Res. 2008; 68:4658-65.10.1158/0008-5472.CAN-07-617418559511Open DOISearch in Google Scholar

eISSN:
1875-855X
Idioma:
Inglés
Calendario de la edición:
6 veces al año
Temas de la revista:
Medicine, Assistive Professions, Nursing, Basic Medical Science, other, Clinical Medicine