Cite

Anzalone, E., Ferreri, V., Sprovieri, M., D’Argenio, B.D., 2007. Travertines as hydrologic archives: the case of the Pontecagnano deposits (southern Italy). Advances in Water Resources, 30, 2159-2175. https://doi.org/10.1016/j.advwatres.2006.09.00810.1016/j.advwatres.2006.09.008Search in Google Scholar

Atabey, E., 2002. The formation of fissure-ridge type laminated travertine-tufa deposits microscopical characteristics and diagenesis, Kirşehir central Anatolia. Bulletin of The Mineral Research and Exploration, 123-124, 59-65.Search in Google Scholar

Boni, M., Gilg, H.A., Balassone, G., Schneider, J., Allen, R.C., Moore, F., 2007. Hypogene Zn carbonate ores in the Angouran deposit, NW Iran. Mineralia Deposita, 42, 799-820. https://doi.org/10.1007/s00126-007-0144-410.1007/s00126-007-0144-4Search in Google Scholar

Burman, J., Gustafsson, O., Segl, M., Schmitz B., 2005. A simplified method of preparing phosphoric acid for stable isotope analyses of carbonates. Rapid Communications in Mass Spectrometry, 19, 3086-3088. https://doi.org/10.1002/rcm.215910.1002/rcm.2159Search in Google Scholar

Casanova, J., 1986. Les stromatolites continentaux: paleoecologie, paleohydrologie, paleoclimatologie. Application au rift Gregory. Doctoral Thesis. Universite´ d’Aix Marseille. France, 70 pp.Search in Google Scholar

Chafetz, H.S. and Folk, R.L., 1984. Travertines: depositional morphology and the bacterially constructed constituents. Journal of Sedimentary Petrology, 54, 289-316.10.1306/212F8404-2B24-11D7-8648000102C1865DSearch in Google Scholar

Chafetz, H.S. and Lawrence, J.R., 1994. Stable isotopic variability within modern travertines. Geographie physique et Quaternaries, 48, 257-273.10.7202/033007arSearch in Google Scholar

D’Argenio, B. and Ferreri,V. 1992. Ambienti di deposizione e litofacies dei travertine quaternari dell’Italia centro-meridionale. Memorie della Società geologica Italiana, 41,861-868.Search in Google Scholar

Gandin, A. and Capezzuoli, E., 2014. Travertine: Distinctive depositional fabrics of carbonates from thermal spring systems. Journal of Sedimentology, 61, 264-290. https://doi.org/10.1111/sed.1208710.1111/sed.12087Search in Google Scholar

Ghasemi, A. and Talbot, C.J., 2006. A new scenario for the Sanandaj-Sirjan zone (Iran). Journal of Asian Earth Sciences, 26, 683-693. https://doi.org/10.1016/j.jseaes.2005.01.00310.1016/j.jseaes.2005.01.003Search in Google Scholar

GSI (Geological Survey of Iran), 1999. Geology maps of Ghorveh and Kabudar Press, Ahang regions, western Iran: a digitized final map at 1:100,000 scale, Teheran.Search in Google Scholar

Guo, L.I. and Riding, R., 1998. Hot-Spring Travertine Facies and Sequences, late Pleistocene, Rapolano Terme, Italy. Journal of Sedimentology, 45, 163-180.10.1046/j.1365-3091.1998.00141.xSearch in Google Scholar

Hoefs, J., 2004. Stable Isotope Geochemistry. 5th Edition. Berlin, Germany: Springer-Verlag. 244 pp.10.1007/978-3-662-05406-2Search in Google Scholar

Inskeep, W.P. and McDermott, T.R., 2005. Geothermal Biology and Geochemistry in Yellowstone National Park. Eds., Bozeman MT, USA: Montana State University Publications.Search in Google Scholar

Jones, B. and Renaut, R.W., 2010. Calcareous spring deposits in continental settings. In: Alonso-Zarza, A.M., Tanner, L.H. (Eds), Carbonates in Continental Settings. Facies Environments and Processes, Elsevier, Amsterdam, pp. 177-224.10.1016/S0070-4571(09)06104-4Search in Google Scholar

Kalender, L., Oztekin-Okan, O., İnceoz, M., Çetindağ, B., Yildirim, V., 2015. Geochemistry of travertine deposits in the Eastern Anatolia District: an example of theSearch in Google Scholar

Karakoçan-Yoğunağaç (Elazığ) and Mazgirt-Dedebağ (Tunceli) travertines, Turkey. Turkish Journal of Earth Sciences, 24, 607-626. https://doi.org/10.3906/yer-1504-2710.3906/yer-1504-27Search in Google Scholar

Karimi Nezhad, M.T., Ghahroudi Tali, M., Hashemi Mahmoudi, M., Pazira, E., 2010. Spatial variability of Sc and Cd concentrations in relation to land use, parent material and soil properties in topsoils of Northern Ghorveh, Kurdistan Province, Iran. World Applied Sciences Journal, 11, 1105-1113.Search in Google Scholar

Kele, S., Demény, A., Siklósy, Z., Németh, T., Tóth, M., Kovács, M.B., 2008. Chemical and stable isotope compositions of recent hot-water travertines and associated thermal waters, from Egerszalók, Hungary: depositional facies and non-equilibrium fractionations. Sedimentary Geology, 211, 53-72. https://doi.org/10.1016/j.sedgeo.2008.08.00410.1016/j.sedgeo.2008.08.004Search in Google Scholar

Kele, S., Ozkul, M., Forizs, I., Gokgoz, A., Baykara, M.O., Alcicek, M.C., Nemeth, T., 2011. Stable isotope geochemical study of Pamukkale travertines: new evidences of low temperature non-equilibrium calcite-water fractionation. Sedimentary Geology, 238, 191-212. https://doi.org/10.1016/j.sedgeo.2011.04.01510.1016/j.sedgeo.2011.04.015Search in Google Scholar

Kele, S., Vaselli, O., Szabo, C., Minissale, A. 2003. Stable isotope geochemistry of Pleistocene travertine from Budakalász (Buda Mts, Hungary). Acta Geologica Hungarica, 46, 161-175.10.1556/AGeol.46.2003.2.4Search in Google Scholar

Keshavarzi, B., Moore, F., Mosaferi, M., Rahmani, F., 2011. The source of natural arsenic contamination in groundwater, west of Iran. Water Quality, Exposure and Health, 3, 135-147. https://doi.org/10.1007/s12403-011-0051-x10.1007/s12403-011-0051-xSearch in Google Scholar

Minissale, A., Kerrich, D., Magro, G., 2002. Structural, hydrological, chemical and climatic parameters affecting the precipitation of travertines in the Quaternary along the Tiber valley, north of Rome. Earth and Planetary Science Letters, 203, 709-728.10.1016/S0012-821X(02)00875-0Search in Google Scholar

Minissale, A., 2004. Origin, transport and discharge of CO2 in central Italy. Earth-Science Reviews, 66, 89-141.10.1016/j.earscirev.2003.09.001Search in Google Scholar

Ozkul, M., Gokgoz, A., Kele, S., Baykara, M.O., Shen, C.C., Chang, Y.W., Kaya, A., Hancer, M., Aratman, C., Akin, T., Oru, Z., 2014. Sedimentological and geochemical characteristics of a fluvial travertine: a case from the eastern Mediterranean region. Sedimentology, 61, 291-318. https://doi.org/10.1111/sed.1209510.1111/sed.12095Search in Google Scholar

Ozkul, M., Varol, B., Alçiçek, M., Alçiçek, C., 2002. Depositional environments and petrography of Denizli travertines. Bulletin of the Mineral Research and Exploration Journal, 125, 13-29.Search in Google Scholar

Panichi, C. and Tongiorgi, E., 1976. Carbon isotopic composition of CO2 from springs, fumaroles, mofettes and travertines of Central and Southern Italy: a preliminary prospection method of geothermal area. Proceedings of the 2nd U.N. Symposium on Development and Use of Geothermal Resources, 1975: San Francisco, 815-825.Search in Google Scholar

Pasvanoglu, S. and Chandrasekharam, D., 2011. Hydrogeochemical and isotopic study of thermal and mineralized waters from the Nevsehir (Kozakli) area, Central Turkey. Journal of Volcanology and Geothermal Research, 202, 241-250. https://doi.org/10.1016/j.jvolgeores.2011.03.00310.1016/j.jvolgeores.2011.03.003Search in Google Scholar

Pentecost, A., 1995. Geochemistry of carbon dioxide in six travertine-depositing waters of Italy. Journal of Hydrology, 167, 263-278.10.1016/0022-1694(94)02596-4Search in Google Scholar

Pentecost, A., 2005. Travertine. Springer, London, 443 pp.Search in Google Scholar

Pentecost, A. and Viles, H.A, 1994. A review and reassessment of travertine classification. Geographie physique et Quaternaire, 48, 305-314.10.7202/033011arSearch in Google Scholar

Prado-Perez, A.J., Hueras, A.D., Crespo, M.T., Martin Sanchez, A., Perez Del Villar, L., 2013. Late Pleistocene and Holocene mid-latitude palaeoclimatic and palaeoenvironmental reconstruction: an approach based on the isotopic record from a travertine formation in the Guadix- Baza basin, Spain. Geological Magazine, 150, 1- 24. https://doi.org/10.1017/S001675681200072610.1017/S0016756812000726Search in Google Scholar

Rahmani Javanmard, S., Tutti, F., Omidian, S., Ranjbaran, M., 2012. Mineralogy and stable isotope geochemistry of the Ab Ask travertines in Damavand geothermal field, Northeast Tehran, Iran. Central European Geology, 55, 187-212. https://doi.org/10.1556/CEuGeol.55.2012.2.510.1556/CEuGeol.55.2012.2.5Search in Google Scholar

Rainey, D.K. and Jones, B., 2009. Abiotic versus biotic controls on the development of the Fairmont Hot Springs carbonate deposit, British Columbia, Canada. Sedimentology, 56, 1832-1857. https://doi.org/10.1111/j.1365-3091.2009.01059.x10.1111/j.1365-3091.2009.01059.xSearch in Google Scholar

Selim, H.H. and Yanik, G., 2009. Development of the Cambazli (Turgutlu/MANISA) fissure-ridge-type travertine and relationship with active tectonics, Gediz Graben, Turkey. Quaternary International, 199, 57-163. https://doi.org/10.1016/j.quaint.2008.04.00910.1016/j.quaint.2008.04.009Search in Google Scholar

Sierralta, M., Kele, S., Melcher, F., Hambach, U., Reinders, J., Van Geldern, R., Frechen, M., 2010. Uranium series dating of travertine from Sutto: Implications for reconstruction of environmental change in Hungary. Quaternary International, 222, 178-193. https://doi.org/10.1016/j.quaint.2009.04.00410.1016/j.quaint.2009.04.004Search in Google Scholar

Uysal, I.T., Feng, Y., Zhao, J., Altunel, E., Weatherley, D., Karabacak, V., Cengiz, O., Golding, S.D., Lawrence, M.G., Collerson, K.D., 2007. U-Series dating and geochemical tracing of late Quaternary travertine in coseismic fissures. Earth and Planetary Science Letters, 257, 450-462. https://doi.org/10.1016/j.epsl.2007.03.00410.1016/j.epsl.2007.03.004Search in Google Scholar

Uysal, T., Feng, Y., Zhao, J., Isik, V., Nuriel, P., Golding, S.D., 2009. Hydrothermal CO2 degassing in seismically active zones during the late Quaternary. Chemical Geology, 265, 442-454. https://doi.org/10.1016/j.chemgeo.2009.05.01110.1016/j.chemgeo.2009.05.011Search in Google Scholar

Valero-Garces, B.L., Arenas, C., Delgado-Huertas, A. 2001. Depositional environments of Quaternary lacustrine travertines and stromatolites from high-altitude Andean lakes, northwestern Argentina. Canadian Journal of Earth Sciences, 38, 1263-1283.10.1139/e01-014Search in Google Scholar

Viles, H.A. and Pentecost, A., 2007. Tufa and travertine. In: Nash, D.J., McLaren, S.J. (Eds.). Geochemical Sediments and Landscapes. Wiley-Blackwell, Oxford, pp. 173-199.10.1002/9780470712917.ch6Search in Google Scholar

Viles, H.A. and Goudie, A.S., 1990. Tufas, travertines and allied carbonate deposits. Progress in Physical Geography, 14, 19-41.10.1177/030913339001400102Search in Google Scholar

Wang, H., Yan, H., Liu, Z., 2014. Contrasts in variations of the carbon and oxygen isotopic composition of travertines formed in pools and a ramp stream at Huanglong Ravine, China: Implications for paleoclimatic interpretations. Geochimica et Cosmochimica Acta, 125, 34-48. https://doi.org/10.1016/j.gca.2013.10.00110.1016/j.gca.2013.10.001Search in Google Scholar

Yoshimura, K., Liu, Z., Cao, J., Yuan, D., Inokura, Y., Noto, M., 2004. Deep source CO2 in natural waters and its role in extensive tufa deposition in the Huanglong Ravines, Sichuan, China. Chemical Geology, 205, 141-153. https://doi.org/10.1016/j.chemgeo.2004.01.004.10.1016/j.chemgeo.2004.01.004Search in Google Scholar

eISSN:
2072-7151
Idioma:
Inglés
Calendario de la edición:
Volume Open
Temas de la revista:
Geosciences, Geophysics, Geology and Mineralogy, other