Acceso abierto

Process Parameters Optimization for Producing AA6061/TiB2 Composites by Friction Stir Processing


Cite

[1] H. Bakes, D. Benjamin, C.W. Kirkpatrick. Metals handbook, vol. 2. OH: ASM. Metals Park, 1979, 3 - 23.Search in Google Scholar

[2] E.M. Sharifi, F. Karimzadeh, M.H. Enayati, Fabrication and Evaluation of mechanical and tribological properties of boron carbide reinforced aluminum matrix Nano composites. Materials and Design, 2011 (32), No. 6, 3263 - 3271.10.1016/j.matdes.2011.02.033Search in Google Scholar

[3] M. Salehi, H. Farnoush, J. Aghazadeh Mohandesi. Fabrication and characterization of functionally graded Al-SiC nano composite by using a novel multistep friction stir processing. Materials and Design, 2014 (63), 419 - 426.10.1016/j.matdes.2014.06.013Search in Google Scholar

[4] S.K. Chaudhury, S.C. Panigrahi. Role of processing parameters on microstructural evolution of spray formed Al-2Mg alloy and Al-2Mg-TiO2 composite. Journal of Material Processing Technology, 2007 (182), 343 - 351.10.1016/j.jmatprotec.2006.08.013Search in Google Scholar

[5] F. Akhlaghi, A. Zare-Bidaki. Influence of graphite content on the dry sliding and oil impregnated sliding wear behaviour of Al 2024-graphite composites produced by in situ powder metallurgy method, Journal of Wear, 2009 (266), No. 1-2,2009, 37- 45.10.1016/j.wear.2008.05.013Search in Google Scholar

[6] A. Baradeswaran, A. Elaya Perumal. Influence of B4C on the tribological and mechanical properties of Al 7075-B4C composites”, Composites B, 2013 (54), 146 -152.10.1016/j.compositesb.2013.05.012Search in Google Scholar

[7] A. Kumar, S. Lal, S. Kumar. Fabrication and characterization of A359/Al2O3 metal matrix composite using electromagnetic stir casting method. Journal of Material Research Technology, 2013 (2), No. 3, 250 - 254.10.1016/j.jmrt.2013.03.015Search in Google Scholar

[8] P. Sharma, S. Sharma, D. Khanduja. Production and some properties of Si3N4 reinforced aluminium alloy composites. Journal of Asian Ceramic Societies, 2015 (3), 352-359.10.1016/j.jascer.2015.07.002Search in Google Scholar

[9] A. Kalkanli, S. Yilmaz. Synthesis and characterization of aluminium alloy 7075 reinforced with silicon carbide particulates, Materials and Design, 2008 (29), No. 4, 775 - 780.10.1016/j.matdes.2007.01.007Search in Google Scholar

[10] M. Zhao, G. Wu, Z. Dou, L. Jiang. TiB2P/Al composite fabricated by squeeze casting technology. Material Science. Engineering A. 2004 (374), No. 1 - 2, 303-30610.1016/j.msea.2004.03.003Search in Google Scholar

[11] L. Ceschini, G. Minak, A. Morri. Tensile and fatigue properties of the AA6061/20 vol.% Al2O3p and AA7005/10 vol.% Al2O3p composites. Composites Science and Technology, 2006 (66), 333 - 342.10.1016/j.compscitech.2005.04.044Search in Google Scholar

[12] K. B. Lee, J. P. Ahn, H. Know. Characteristics of AA6061/BN Composite Fabricated by Pressure Less Infiltration Technique. Metallurgical and materials transactions A, 2001 (32), 1007 - 1018.10.1007/s11661-001-0358-5Search in Google Scholar

[13] C. Bacciarini, V. Mathier. Aluminium AA6061 Matrix Composite Reinforced with Spherical Alumina Particles Produced by Infiltration: Perspective on Aerospace Applications”, Journal of Metallurgy, 2014, Article ID 248542, 10 pages.10.1155/2014/248542Search in Google Scholar

[14] S.K. Ghosh, P. Saha. Crack and wear behaviour of Sic particulate reinforced aluminium based metal matrix composite fabricated by direct metal laser sintering process. Materials Design, 2011 (32), 139 - 45.10.1016/j.matdes.2010.06.020Search in Google Scholar

[15] K. L. Tee, L. Lu, M. O. Lai. Wear performance of in situ Al- TiB2 composite”, Wear, 2000 (240), 59 -64.10.1016/S0043-1648(00)00337-9Search in Google Scholar

[16] H. S. Arora, H. Singh, B. K. Dhindaw. Composite fabrication using friction stir processing - A review. International Journal of Advanced Manufacturing Technology, 2012 (61), No. 9 - 12, 1043 - 1055.10.1007/s00170-011-3758-8Search in Google Scholar

[17] Y. M. Youssef, R. J. Dashwood, P. D. Lee. Effect of clustering on particle pushing and solidification behaviour in TiB2 reinforced aluminium PMMCs. Composites Part A: Applied Science and Manufacturing, 2005 (36), 747 - 769.10.1016/j.compositesa.2004.10.027Search in Google Scholar

[18] L. T. Jiang, G. Q. Chen, X. D. He, M. Zhao, Z. Y. Xiu, R. J. Fan, G. H. Wu. Microstructure and tensile properties of TiB2p/6061 Al composites. Transactions of Nonferrous Metals Society of China, 2009 (19), Supplement 3, s542 - s546.10.1016/S1003-6326(10)60105-7Search in Google Scholar

[19] V. Umasankar, M. Anthony Xavior, S. Karthikeyan. Experimental evaluation of the influence of processing parameters on the mechanical properties of Sic particle reinforced AA6061 aluminium alloy matrix composite by powder processing. Journal of Alloys and Compounds, 2014 (582), No. 9, 380 - 386.10.1016/j.jallcom.2013.07.129Search in Google Scholar

[20] M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P. Temple Smith, C. J. Dawes, The Welding Institute, TWI, International Patent Application No. PCT/GB92/02203 and GB Patent Application No. 9125978.8, 1991.Search in Google Scholar

[21] R.S. Mishra, Z.Y. Ma, I. Charit. Friction stir processing: A novel technique for fabrication of surface composite. Journal of material science and engineering, 2003 (341), No. 1 - 2, 307 - 310.10.1016/S0921-5093(02)00199-5Search in Google Scholar

[22] R. Jančo, L. Écsi, P. Élesztős. Fsw numerical simulation of aluminium plates by sysweld - PART II. Journal of mechanical engineering - Strojnícky časopis, 2016 (66), No. 2, 29 - 36.10.1515/scjme-2016-0016Search in Google Scholar

[23] R. Jančo, L. Écsi, P. Élesztős. Fsw numerical simulation of aluminium plates by sysweld - PART I. Journal of mechanical engineering - Strojnícky časopis, 2016 (66), No. 1, 47 - 52.10.1515/scjme-2016-0010Search in Google Scholar

[24] W. Wang, Q. Shi, P. Liu, H. Li, T. Li. A novel way to produce bulk SiCp reinforced aluminium metal matrix composites by friction stir processing, Journal of Materials Processing Technology, 2009 (209), No. 4, 2099 - 2103.10.1016/j.jmatprotec.2008.05.001Search in Google Scholar

[25] A. Handa, V. Chawla. Experimental evaluation of mechanical properties of friction welded dissimilar steels under varying axial pressures. Journal of mechanical engineering - Strojnícky časopis, 2016 (66), No. 1, 27 - 36.10.1515/scjme-2016-0008Search in Google Scholar

[26] S. Soleymani, A. Abdllah - Zadesh, S.A. Alodkht. Micro structural and tribological properties of Al 583 based surface hybrid composite produced by friction stir processing. Wear, 2012 (278 - 279), 41-47.10.1016/j.wear.2012.01.009Search in Google Scholar

[27] A. Dolatkhah, P. Golbabaei, M. K. Besharat, G, F. Molaikiya. Investigating effects of process parameters on micro structure and mechanical properties of Al 5052/Sic metal matrix composite fabricated via friction stir processing, Materials and Design, 2012 (37), 458 -464.10.1016/j.matdes.2011.09.035Search in Google Scholar

[28] J. Gandra, R. Miranda, P. Vilaca, A. Velhinho, J. P. Teixeira. Functionally graded materials produced by friction stir processing, Journal of Materials Processing Technology, 2011 (211), No. 11, 1659 - 1668.10.1016/j.jmatprotec.2011.04.016Search in Google Scholar

[29] A. Kurt, et.al. Surface modification of aluminum alloys by friction stir processing, Journal of material processing technology, 2011 (211), 313 - 331.10.1016/j.jmatprotec.2010.09.020Search in Google Scholar

[30] S. R. Anvari, F. Karimzadeh, M. H. Enayati. Wear characteristics of Al-Cr-O surface nano-composite layer fabricated on Al6061 plate by friction stir processing. Wear, 2013 (304), 144 - 151.10.1016/j.wear.2013.03.014Search in Google Scholar

[31] M. Yang, X. Chengying, Ch. Wu, K. Lin , J. Ch. Yuh, L. Anal. Fabrication of AA6061 / Al2o3 nano ceramic particle reinforeced composite coating by using friction stir processing. Journal Material Science, 2010 (45), 4431 - 4438.10.1007/s10853-010-4525-1Search in Google Scholar

[32] A. Thangarasu, N. Murugan, I. Dinaharan, S. J. Vijay. Synthesis and characterization of titanium carbide particulate reinforced AA6082 aluminium alloy composites via friction stir processing. Archives of Civil and Mechanical Engineering, 2015 (15), No. 2, 324 -334.10.1016/j.acme.2014.05.010Search in Google Scholar

[33] Y. Morisada, H. Fujii, T. Nagaoka, K. Nogi, M. Fukusumi. Fullerene/A5083 composites fabricated by material flow during friction stir processing”, Composites: Part A, 2007 (38), 2097 - 2101.10.1016/j.compositesa.2007.07.004Search in Google Scholar

[34] D. C. Montgomery. Design and analysis of experiments [M]. IV Edition. NY: John- Wiley & Sons, Inc, 2006.Search in Google Scholar

[35] P. J. Taguchi techniques for quality engineering: loss function, orthogonal experiments, parameter and tolerance design. New York: NY: McGraw-Hill Professional; 2nd edition, 1995.Search in Google Scholar

[36] E. R. I Mahmoud, M. Takahashi, T. Shibayanagi, K. Ikeuchi. Effect of friction stir processing tool probe on fabrication of SiC particle reinforced composite on aluminium surface. Science and Technology of Welding and Joining, 2009 (14), No. 5, 713 − 725.10.1179/136217109X406974Search in Google Scholar

[37] W. Wang, Q. Shi, P. Liu, H. Li, T. Li. A novel way to produce bulk SiCp reinforced aluminium metal matrix composites by friction stir processing. Journal of Materials Processing Technology, 2009 (209), No. 4, 2099 − 2103.10.1016/j.jmatprotec.2008.05.001Search in Google Scholar

[38] M. Salehi, M. Saadatmand, J. Aghazadeh Mohandesi. Optimization of process parameters for producing AA6061/SiC nanocomposites by friction stir processing. Transactions Nonferrous Metals Society of China, 2012 (22), 1055 − 106310.1016/S1003-6326(11)61283-1Search in Google Scholar

[39] M. Barmouz, M. K. B. Givi, J. Seyfi. On the role of processing parameters in producing Cu/SiC metal matrix composites via friction stir processing: Investigating microstructure, micro hardness, wear and tensile behaviour. Materials Characterization, 2011 (62), No. 1, 108 − 117.10.1016/j.matchar.2010.11.005Search in Google Scholar

[40] J. Deng. Introduction to grey system. J Grey Systems, 1989, 1 - 24.Search in Google Scholar

[41] J. Kundu, H. Singh, Friction stir welding: multi-response optimization using Taguchibased GRA, Production & Manufacturing Research, 2016 (4), No. 1, 228 - 241.10.1080/21693277.2016.1266449Search in Google Scholar

[42] S. Vijayan, R. Raju, S. R. K Rao. Multiobjective Optimization of Friction Stir Welding Process Parameters on Aluminium Alloy AA 5083 Using Taguchi-Based Grey Relation Analysis. Materials and Manufacturing Processes, 2010 (25), No. 11, 1206 - 1212.10.1080/10426910903536782Search in Google Scholar

[43] S. Kasman. Multi response optimization using the Taguchi based grey relational analysis, a case study for dissimilar stir butt welding of AA6082 -T6 /AA5754-H111, The international journal of Advanced manufacturing technology, 2013 (68), 795 - 804.10.1007/s00170-012-4720-0Search in Google Scholar

[44] Ch.-H. Chien, W-B Lin, T. Chen. Optimal FSW process parameters for aluminum alloys AA5083. Journal of the Chinese Institute of Engineers, 2011 (34), No. 1, 99 - 105.10.1080/02533839.2011.553024Search in Google Scholar

[45] S. Vijayan, R. Raju, S. R. K Rao. Multiobjective Optimization of Friction Stir Welding Process Parameters on Aluminium Alloy AA 5083 Using Taguchi-Based Grey Relation Analysis. Materials and Manufacturing Processes, 2010 (25), No. 11, 1206 - 1212.10.1080/10426910903536782Search in Google Scholar

[46] N. D. Ghetiya, K.M. Patel, A.J. Kavar. Multi-objective optimization of FSW process parameters of aluminum alloy using taguchi-based grey relational analysis. Transactions of the Indian Institute of Metals, 2016 (69), 917 - 923.10.1007/s12666-015-0581-1Search in Google Scholar

[47] M.M. El-Rayes, E.A. El-Danaf. The influence of multi-pass friction stir processing on the microstructural and mechanical properties of Aluminum Alloy6082. Journal of Material Processing Technology, 2012 (212), 1157 - 1168.10.1016/j.jmatprotec.2011.12.017Search in Google Scholar

[48] A. Hamdollahzadeha, M. Bahrami, M. Farahmand Nikoo, A. Yusefi , M.K. Besharati Givib, N. Parvina. Microstructure evolutions and mechanical properties of nano-SiCfortified AA7075 friction stir weldment: The role of second pass processing. Journal of Manufacturing Processes, 2015 (20), No. 1, 367 - 373.10.1016/j.jmapro.2015.06.017Search in Google Scholar

[49] M. Barmouz, P. Asadi, M. K. B. Givi, M. Taherishargh. Investigation of mechanical properties of Cu/SiC composite fabricated by FSP: effect of SiC particles’ size and volume fraction”, Material Science and Engineering A, 2011 (528), No. 3, 1740 - 1751.10.1016/j.msea.2010.11.006Search in Google Scholar

[50] D.K. Lim, T. Shibayanagi, P.A. Gerlich. Synthesis of multi-walled CNT reinforced aluminium alloy composite via friction stir processing. Materials Science and Engineering A., 2009 (507), No. 1 - 2, 194 − 199.10.1016/j.msea.2008.11.067Search in Google Scholar

[51] L. Suvarna Raju, A. Kumar. Influence of Al2O3 particles on the microstructure and mechanical properties of copper surface composites fabricated by friction stir processing. Defence Technology, 2014 (10), 375 - 383.10.1016/j.dt.2014.09.001Search in Google Scholar

eISSN:
2450-5471
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Engineering, Mechanical Engineering, Fundamentals of Mechanical Engineering, Mechanics