Acceso abierto

Imaging of human glioblastoma cells and their interactions with mesenchymal stem cells in the zebrafish (Danio rerio) embryonic brain


Cite

Ohgaki H, Kleihues P. The definition of primary and secondary glioblastoma. Clin Cancer Res 2013; 19: 764-72.OhgakiHKleihuesP.The definition of primary and secondary glioblastomaClin Cancer Res2013197647210.1158/1078-0432.CCR-12-300223209033Search in Google Scholar

Claes A, Idema A, Wesseling P. Diffuse glioma growth: a guerilla war. Acta Neuropathol 2007; 114: 443-58.ClaesAIdemaAWesselingP.Diffuse glioma growth: a guerilla warActa Neuropathol20071144435810.1007/s00401-007-0293-7203979817805551Search in Google Scholar

Gupta MK, Jayaram S, Reddy DN, Polisetty RV, Sirdeshmukh R. Transcriptomic and proteomic data integration and two-dimensional molecular maps with regulatory and functional linkages: application to cell proliferation and invasion networks in glioblastoma. J Proteome Res 2015; 14: 5017-27GuptaMKJayaramSReddyDNPolisettyRVSirdeshmukhR.Transcriptomic and proteomic data integration and two-dimensional molecular maps with regulatory and functional linkages: application to cell proliferation and invasion networks in glioblastomaJ Proteome Res20151450172710.1021/acs.jproteome.5b0076526464075Search in Google Scholar

Klekner Á, Hutóczki G, Virga J, Reményi-Puskár J, Tóth J, Scholtz B, et al. Expression pattern of invasion-related molecules in the peritumoral brain. Clin Neurol Neurosurg 2015; 139: 138-43.KleknerÁHutóczkiGVirgaJReményi-PuskárJTóthJScholtzBet alExpression pattern of invasion-related molecules in the peritumoral brainClin Neurol Neurosurg20151391384310.1016/j.clineuro.2015.09.01726451999Search in Google Scholar

Friedl P, Wolf K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 2003; 3: 362-74.FriedlPWolfK.Tumour-cell invasion and migration: diversity and escape mechanismsNat Rev Cancer200333627410.1038/nrc107512724734Search in Google Scholar

Friedl P, Wolf K. Plasticity of cell migration: a multiscale tuning model. J Cell Biol 2010; 188: 11-9.FriedlPWolfK.Plasticity of cell migration: a multiscale tuning modelJ Cell Biol201018811910.1083/jcb.200909003281284819951899Search in Google Scholar

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144: 646-74.HanahanDWeinbergRAHallmarks of cancer: the next generationCell20111446467410.1016/j.cell.2011.02.01321376230Search in Google Scholar

Grisendi G, Bussolari R, Veronesi E, Piccinno S, Burns JS, De Santis G, et al. Understanding tumor-stroma interplays for targeted therapies by armed mesenchymal stromal progenitors: the Mesenkillers. Am J Cancer Res 2011; 1: 787-805.GrisendiGBussolariRVeronesiEPiccinnoSBurnsJSDe SantisGet alUnderstanding tumor stroma interplays for targeted therapies by armed mesenchymal stromal progenitors: the MesenkillersAm J Cancer Res20111787805Search in Google Scholar

Kološa K, Motaln H, Herold-Mende C, Koršič M, Lah TT. Paracrine effects of mesenchymal stem cells induce senescence and differentiation of glioblastoma stem-like cells. Cell Transplant 2015; 24: 631-44.KološaKMotalnHHerold MendeCKoršičMLahTT.Paracrine effects of mesenchymal stem cells induce senescence and differentiation of glioblastoma stem-like cellsCell Transplant2015246314410.3727/096368915X68778725806680Search in Google Scholar

Motaln H, Lah TT. Cytokines play a key role in communication between mesenchymal stem cells and brain cancer cells. Protein Pept Lett 2015; 22: 322-31.MotalnHLahTT.Cytokines play a key role in communication between mesenchymal stem cells and brain cancer cellsProtein Pept Lett2015223223110.2174/092986652266615013112380825642990Search in Google Scholar

Barcellos-de-Souza P, Gori V, Bambi F, Chiarugi P. Tumor microenvironment: bone marrow-mesenchymal stem cells as key players. Biochim Biophys Acta 2013; 1836: 321-35.Barcellos-de-SouzaPGoriVBambiFChiarugiP.Tumor microenvironment: bone marrow-mesenchymal stem cells as key playersBiochim Biophys Acta201318363213510.1016/j.bbcan.2013.10.00424183942Search in Google Scholar

Arango-Rodriguez ML, Ezquer F, Ezquer M, Conget P. Could cancer and infection be adverse effects of mesenchymal stromal cell therapy? World J Stem Cells 2015; 7: 408-17.Arango RodriguezMLEzquerFEzquerMCongetP.Could cancer and infection be adverse effects of mesenchymal stromal cell therapy?World J Stem Cells201574081710.4252/wjsc.v7.i2.408436949625815124Search in Google Scholar

Fei S, Qi X, Kedong S, Guangchun J, Jian L, Wei Q. The antitumor effect of mesenchymal stem cells transduced with a lentiviral vector expressing cytosine deaminase in a rat glioma model. J Cancer Res Clin Oncol 2012; 138: 347-57.FeiSQiXKedongSGuangchunJJianLWeiQ.The antitumor effect of mesenchymal stem cells transduced with a lentiviral vector expressing cytosine deaminase in a rat glioma modelJ Cancer Res Clin Oncol20121383475710.1007/s00432-011-1104-z22139383Search in Google Scholar

Kim SM, Woo JS, Jeong CH, Ryu CH, Lim JY, Jeun SS. Effective combination therapy for malignant glioma with TRAIL-secreting mesenchymal stem cells and lipoxygenase inhibitor MK886. Cancer Res 2012; 72: 4807-17.KimSMWooJSJeongCHRyuCHLimJYJeunSS.Effective combination therapy for malignant glioma with TRAIL-secreting mesenchymal stem cells and lipoxygenase inhibitor MK886Cancer Res20127248071710.1158/0008-5472.CAN-12-012322962275Search in Google Scholar

Schichor C, Albrecht V, Korte B, Buchner A, Riesenberg R, Mysliwietz J, et al. Mesenchymal stem cells and glioma cells form a structural as well as a functional syncytium in vitro. Exp Neurol 2012; 234: 208-19.SchichorCAlbrechtVKorteBBuchnerARiesenbergRMysliwietzJet alMesenchymal stem cells and glioma cells form a structural as well as a functional syncytium in vitroExp Neurol20122342081910.1016/j.expneurol.2011.12.03322230665Search in Google Scholar

Pilat MM, Oliveira M, Motaln H, Breznik B, Glaser T, Lah TT, et al. Glioblastoma-mesenchymal stem cell communication modulates expression and activities of kinin receptors: possible involvement of bradykinin on information flow. Cytometry A 2016; DOI: 10.1002/cyto.a.22800PilatMMOliveiraMMotalnHBreznikBGlaserTLahTTet alGlioblastoma-mesenchymal stem cell communication modulates expression and activities of kinin receptors: possible involvement of bradykinin on information flowCytometry A2016DOI:10.1002/cyto.a.2280026671187Open DOISearch in Google Scholar

Behnan J, Isakson P, Joel M, Cilio C, Langmoen I, Vik-Mo EO, et al. Recruited brain rumor-derived mesenchymal stem cells contribute to brain tumor progression. Stem Cells 2014; 32: 1110-23.BehnanJIsaksonPJoelMCilioCLangmoenIVik-MoEOet alRecruited brain rumor-derived mesenchymal stem cells contribute to brain tumor progressionStem Cells20143211102310.1002/stem.161424302539Search in Google Scholar

Vittori M, Motaln H, Lah TT. The study of glioma by xenotransplantation in zebrafish early life stages. J Histochem Cytochem 2015; 63: 749-61.VittoriMMotalnHLahTT.The study of glioma by xenotransplantation in zebrafish early life stagesJ Histochem Cytochem2015637496110.1369/0022155415595670482380426109632Search in Google Scholar

Grunwald DJ, Eisen JS. Headwaters of the zebrafish – emergence of a new model vertebrate. Nat Rev Genet 2002; 3: 717-24.GrunwaldDJEisenJS.Headwaters of the zebrafish – emergence of a new model vertebrateNat Rev Genet200237172410.1038/nrg89212209146Search in Google Scholar

Feng Y, Martin P. Imaging innate immune responses at tumour initiation: new insights from fish and flies. Nat Rev Cancer 2015; 15: 556-62.FengYMartinP.Imaging innate immune responses at tumour initiation: new insights from fish and fliesNat Rev Cancer2015155566210.1038/nrc397926289312Search in Google Scholar

White R, Rose K, Zon L. Zebrafish cancer: the state of the art and the path forward. Nat Rev Cancer 2013; 13: 624-36.WhiteRRoseKZonL.Zebrafish cancer: the state of the art and the path forwardNat Rev Cancer2013136243610.1038/nrc3589604089123969693Search in Google Scholar

Zon LI, Peterson RT. In vivo drug discovery in the zebrafish. Nat Rev Drug Discov 2005; 4: 35-44.ZonLIPetersonRT.In vivo drug discovery in the zebrafishNat Rev Drug Discov20054354410.1038/nrd160615688071Search in Google Scholar

Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EH. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 2008; 322: 1065-9.KellerPJSchmidtADWittbrodtJStelzerEH.Reconstruction of zebrafish early embryonic development by scanned light sheet microscopyScience20083221065910.1126/science.116249318845710Search in Google Scholar

Geiger GA, Fu W, Kao GD. Temozolomide-mediated radiosensitization of human glioma cells in a zebrafish embryonic system. Cancer Res 2008; 68: 3396-404.GeigerGAFuWKaoGD.Temozolomide-mediated radiosensitization of human glioma cells in a zebrafish embryonic systemCancer Res200868339640410.1158/0008-5472.CAN-07-6396361632618451167Search in Google Scholar

Lal S, La Du J, Tanguay RL, Greenwood JA. Calpain 2 is required for the invasion of glioblastoma cells in the zebrafish brain microenvironment. J Neurosci Res 2012; 90: 769-81.LalSLa DuJTanguayRLGreenwoodJA.Calpain 2 is required for the invasion of glioblastoma cells in the zebrafish brain microenvironmentJ Neurosci Res2012907698110.1002/jnr.22794327459522183788Search in Google Scholar

Konantz M, Balci TB, Hartwig UF, Dellaire G, André MC, Berman JN, et al. Zebrafish xenografts as a tool for in vivo studies on human cancer. Ann N Y Acad Sci 2012; 1266: 124-37.KonantzMBalciTBHartwigUFDellaireGAndréMCBermanJNet alZebrafish xenografts as a tool for in vivo studies on human cancerAnn N Y Acad Sci201212661243710.1111/j.1749-6632.2012.06575.x22901264Search in Google Scholar

Sakhalkar HS, Dewhirst M, Oliver T, Cao Y, Oldham M. Functional imaging in bulk tissue specimens using optical emission tomography: fluorescence preservation during optical clearing. Phys Med Biol 2007; 52: 2035-54.SakhalkarHSDewhirstMOliverTCaoYOldhamM.Functional imaging in bulk tissue specimens using optical emission tomography: fluorescence preservation during optical clearingPhys Med Biol20075220355410.1088/0031-9155/52/8/00117404454Search in Google Scholar

Dodt HU, Leischner U, Schierloh A, Jährling N, Mauch CP, Deininger K, et al. Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat Methods 2007; 4: 331-6.DodtHULeischnerUSchierlohAJährlingNMauchCPDeiningerKet alUltramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brainNat Methods20074331610.1038/nmeth103617384643Search in Google Scholar

Zukor KA, Kent DT, Odelberg SJ. Fluorescent whole-mount method for visualizing three-dimensional relationships in intact and regenerating adult newt spinal cords. Dev Dyn 2010; 239: 3048-57.ZukorKAKentDTOdelbergSJ.Fluorescent whole-mount method for visualizing three-dimensional relationships in intact and regenerating adult newt spinal cordsDev Dyn201023930485710.1002/dvdy.22441301351520931649Search in Google Scholar

Oldham M, Sakhalkar H, Oliver T, Allan Johnson G, Dewhirst M. Optical clearing of unsectioned specimens for three-dimensional imaging via optical transmission and emission tomography. J Biomed Opt 2008; 13: 021113.OldhamMSakhalkarHOliverTAllan JohnsonGDewhirstM.Optical clearing of unsectioned specimens for three-dimensional imaging via optical transmission and emission tomographyJ Biomed Opt20081302111310.1117/1.2907968274604218465962Search in Google Scholar

Ertürk A, Becker K, Jährling N, Mauch CP, Hojer CD, Egen JG, et al. Threedimensional imaging of solvent-cleared organs using 3DISCO. Nat Protoc 2012; 7: 1983-95.ErtürkABeckerKJährlingNMauchCPHojerCDEgenJGet alThreedimensional imaging of solvent-cleared organs using 3DISCONat Protoc2012719839510.1038/nprot.2012.11923060243Search in Google Scholar

Becker K, Jährling N, Saghafi S, Weiler R, Dodt H-U. Chemical clearing and dehydration of GFP expressing mouse brains. PLoS ONE 2012;7: e33916BeckerKJährlingNSaghafiSWeilerRDodtH-U.Chemical clearing and dehydration of GFP expressing mouse brainsPLoS ONE20127e3391610.1371/journal.pone.0033916331652122479475Search in Google Scholar

Hama H, Kurokawa H, Kawano H, Ando R, Shimogori T, Noda H, et al. Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat Neurosci 2011; 14: 1481-8.HamaHKurokawaHKawanoHAndoRShimogoriTNodaHet alScale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brainNat Neurosci2011141481810.1038/nn.292821878933Search in Google Scholar

Ke MT, Fujimoto S, Imai T. SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat Neurosci 2013; 16: 1154-61.KeMTFujimotoSImaiT.SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstructionNat Neurosci20131611546110.1038/nn.344723792946Search in Google Scholar

Susaki EA, Tainaka K, Perrin D, Kishino F, Tawara T, Watanabe TM, et al. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell 2014; 157: 726-39.SusakiEATainakaKPerrinDKishinoFTawaraTWatanabeTMet alWhole-brain imaging with single-cell resolution using chemical cocktails and computational analysisCell20141577263910.1016/j.cell.2014.03.04224746791Search in Google Scholar

Tainaka K, Kubota SI, Suyama TQ, Susaki EA, Perrin D, Ukai-Tadenuma M, et al. Whole-body imaging with single-cell resolution by tissue decolorization. Cell 2014; 159: 911-24.TainakaKKubotaSISuyamaTQSusakiEAPerrinDUkai-TadenumaMet alWhole-body imaging with single-cell resolution by tissue decolorizationCell20141599112410.1016/j.cell.2014.10.03425417165Search in Google Scholar

Kuwajima T, Sitko AA, Bhansali P, Jurgens C, Guido W, Mason C. ClearT: a detergent- and solvent-free clearing method for neuronal and non-neuronal tissue. Development 2013; 140: 1364-8.KuwajimaTSitkoAABhansaliPJurgensCGuidoWMasonC.ClearT: a detergentand solvent-free clearing method for neuronal and non-neuronal tissueDevelopment20131401364810.1242/dev.091844391224423444362Search in Google Scholar

Chung K, Wallace J, Kim SY, Kalyanasundaram S, Andalman AS, Davidson TJ, et al. Structural and molecular interrogation of intact biological systems. Nature 2013; 497: 332-7.ChungKWallaceJKimSYKalyanasundaramSAndalmanASDavidsonTJet alStructural and molecular interrogation of intact biological systemsNature2013497332710.1038/nature12107409216723575631Search in Google Scholar

Yang B, Treweek JB, Kulkarni RP, Deverman BE, Chen CK, Lubeck E, et al. Single-cell phenotyping within transparent intact tissue through wholebody clearing. Cell 2014; 158: 945-58.YangBTreweekJBKulkarniRPDevermanBEChenCKLubeckEet alSingle cell phenotyping within transparent intact tissue through wholebody clearingCell20141589455810.1016/j.cell.2014.07.017415336725088144Search in Google Scholar

Organisation for Economic Cooperation and Development. OECD Guidelines For Testing of Chemicals. Test No. 236. Fish Embryo Acute Toxicity (FET) Test. Paris: OECD Publishing; 2013.Organisation for Economic Cooperation and DevelopmentOECD Guidelines For Testing of Chemicals Test No. 236. Fish Embryo Acute Toxicity (FET) TestParisOECD Publishing2013Search in Google Scholar

Abramoff MD, Magalhães PJ, Ram SJ. Image processing with ImageJ. Biophotonics Intern 2004; 11: 36-42.AbramoffMDMagalhãesPJRamSJ.Image processing with ImageJBiophotonics Intern2004113642Search in Google Scholar

Prieto D, Aparicio G, Morande PE, Zolessi FR. A fast, low-cost, and highly efficient fluorescent DNA labeling method using methyl green. Histochem Cell Biol 2014; 142: 335-45.PrietoDAparicioGMorandePEZolessiFR.A fast, low-cost, and highly efficient fluorescent DNA labeling method using methyl greenHistochem Cell Biol20141423354510.1007/s00418-014-1215-024671497Search in Google Scholar

Gekko, K, Timasheff SN. Mechanism of protein stabilization by glycerol: preferential hydration in glycerol-water mixtures. Biochemistry 1981; 20: 4667-76.GekkoKTimasheffSN.Mechanism of protein stabilization by glycerol: preferential hydration in glycerol-water mixturesBiochemistry19812046677610.1021/bi00519a0237295639Search in Google Scholar

Street TO, Bolen DW, Rose GD. A molecular mechanism for osmolyteinduced protein stability. Proc Natl Acad Sci U S A 2006; 103: 13997-4002.StreetTOBolenDWRoseGD.A molecular mechanism for osmolyteinduced protein stabilityProc Natl Acad Sci U S A200610313997400210.1073/pnas.0606236103156406516968772Search in Google Scholar

Eden C, Ju B, Murugesan M, Phoenix T, Nimmervoll B, Tong Y, et al. Orthotopic models of pediatric brain tumors in zebrafish. Oncogene 2015; 34: 1736-42.EdenCJuBMurugesanMPhoenixTNimmervollBTongYet alOrthotopic models of pediatric brain tumors in zebrafishOncogene20153417364210.1038/onc.2014.107420522324747973Search in Google Scholar

Gritsenko PG, Ilina O, Friedl P. Interstitial guidance of cancer invasion. J Pathol 2012; 226: 185-99.GritsenkoPGIlinaOFriedlP.Interstitial guidance of cancer invasionJ Pathol20122261859910.1002/path.303122006671Search in Google Scholar

Motaln H, Koren A, Gruden K, Ramšak Ž, Schichor C, Lah TT. Heterogeneous glioblastoma cell cross-talk promotes phenotype alterations and enhanced drug resistance. Oncotarget 2015; 38: 40998-1017.MotalnHKorenAGrudenKRamšakŽSchichorCLahTT.Heterogeneous glioblastoma cell cross-talk promotes phenotype alterations and enhanced drug resistanceOncotarget20153840998101710.18632/oncotarget.5701474738526517510Search in Google Scholar

Gole B, Huszthy PC, Popović M, Jeruc J, Ardebili YS, Bjerkvig R, Lah TT. The regulation of cysteine cathepsins and cystatins in human gliomas. Int J Cancer 2012; 131: 1779-89.GoleBHuszthyPCPopovićMJerucJArdebiliYSBjerkvigRLahTT.The regulation of cysteine cathepsins and cystatins in human gliomasInt J Cancer201213117798910.1002/ijc.2745322287159Search in Google Scholar

Motaln H, Gruden K, Hren M, Schichor C, Primon M, Rotter A, et al. Human mesenchymal stem cells exploit the immune response mediating chemokines to impact the phenotype of glioblastoma. Cell Transplant 2012; 21: 1529-45.MotalnHGrudenKHrenMSchichorCPrimonMRotterAet alHuman mesenchymal stem cells exploit the immune response mediating chemokines to impact the phenotype of glioblastomaCell Transplant20122115294510.3727/096368912X64054722554389Search in Google Scholar

Tajnšek U, Motaln H, Levičar N, Rotter A, Lah TT. The duality of stem cell: double edged sword in tumour evolution and treatment. In: Resende RR, Ulrich H, editor. Trends in Stem Cell Proliferation and Cancer Research. Dordrecht: Springer Netherlands; 2013. p. 391-434.TajnšekUMotalnHLevičarNRotterALahTTThe duality of stem cell: double edged sword in tumour evolution and treatmentResendeRRUlrichHTrends in Stem Cell Proliferation and Cancer ResearchDordrechtSpringer Netherlands201339143410.1007/978-94-007-6211-4_15Search in Google Scholar

eISSN:
1581-3207
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Clinical Medicine, Radiology, Internal Medicine, Haematology, Oncology