Acceso abierto

A standard Fricke dosimeter compared to an ionization chamber used for dosimetric characterization of 60Co photon beam


Cite

[1] ICRU. Determination of absorbed dose in a patient irradiated by beams of X or gamma rays in radiotherapy procedures. Bethesda,MD: International Commission on Radiation Units and Measurements, ICRU Report 24; 1976.Search in Google Scholar

[2] IAEA. Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water. Vienna: International Atomic Energy Agency, Technical Reports Series TRS-398; 2000.Search in Google Scholar

[3] Rah J-E, Hong J-Y, Yoon S-C, et al. Measurements of the relative output factors for radiosurgical cyberknife collimators using a glass rod dosimeter. J Nucl Sci Technol. 2008;45(sup5):245-248.10.1080/00223131.2008.10875833Search in Google Scholar

[4] Wong CJ, Ackerly T, He C, et al. Small field size dose-profile measurement using gel dosimeters, gafchromic films and microthermoluminescent dosimeters. Radiat Meas. 2009;44(3):249-256.10.1016/j.radmeas.2009.03.012Search in Google Scholar

[5] Calcina CS, de Oliveira LN, de Almeida CE, et al. Dosimetric parameters for small field sizes using Fricke xylenol gel, thermoluminescent and film dosimeters, and an ionization chamber. Phys Med Biol. 2007;52(5):1431-1439.10.1088/0031-9155/52/5/01417301463Search in Google Scholar

[6] Palm Å, Mattsson O. Experimental determination of beam quality conversion factors kQ in clinical photon beams using ferrous sulphate (Fricke) dosimetry. Med Phys. 2002;29(12):2756-2762.10.1118/1.152194112512708Search in Google Scholar

[7] Besserer J, Bilski P, deBoer J, et al. Dosimetry of low-energy protons and light ions. Phys Med Biol. 2001;46(2):473-485. 10.1088/0031-9155/46/2/31411229727Search in Google Scholar

[8] Chen WL, Chang SC. The use of the ferrous sulphate dosimeter for intercomparison of absorbed dose from electron beams. Med Phys. 1984;11(3):335-337.10.1118/1.5955096429501Search in Google Scholar

[9] Villarreal-Barajas JE, González-Martinez PR, Ureña-Nuñez F, et al. Intercomparison of absorbed dose to water measurements for 60Co gamma rays using Fricke, alanine and radiochromic dye film dosimetry. Radiat Prot Dosim. 2002;101(1-4):449-451.10.1093/oxfordjournals.rpd.a00602312382788Search in Google Scholar

[10] Almond PR, Biggs PJ, Coursey BM, et al. AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. Med Phys. 1999;26(9):1847-1870.10.1118/1.59869110505874Search in Google Scholar

[11] Austerlitz C, Mota H, Almeida CE, et al. Quality assurance of HDR 192Ir sources using a Fricke dosimeter. Med Phys. 2007;34(4):1348-1353.10.1118/1.271447217500465Search in Google Scholar

[12] ASTM. Standard method for using the Fricke dosimeter to measure absorbed dose in water. Philadelphia, PA: American Society for Testing and Materials. Report E1026; 1984.Search in Google Scholar

[13] Davies JV, Law J. Practical aspects of ferrous sulphate dosimetry. Phys Med Biol. 1963;8(1):91-96.10.1088/0031-9155/8/1/30814025420Search in Google Scholar

[14] Klassen NV, Shortt KR, Seuntjens J, et al. Fricke dosimetry: the difference between G(Fe3+) for 60Co g-rays and high-energy x-rays. Phys Med Biol. 1999;44(7):1609-1624.10.1088/0031-9155/44/7/30310442700Search in Google Scholar

[15] ICRU. The dosimetry of pulsed radiation. Bethesda, MD: International Commission on Radiation Units and Measurements, ICRU Report 34; 1982.Search in Google Scholar

[16] Shortt KR. The temperature dependence of G(Fe3+) for the Fricke dosemeter. Phys Med Biol. 1989;34(12):1923-1926.10.1088/0031-9155/34/12/014Search in Google Scholar

[17] Ma CM, Rogers DW, Shortt K R, et al. Wall-correction and absorbed-dose conversion factors for Fricke dosimetry: Monte Carlo calculations and measurements. Med Phys. 1993;20(2Pt1):283-292.10.1118/1.5971288497212Search in Google Scholar

[18] IAEA. Review of Radiation Oncology Physics: A Handbook for Teachers and Students. Vienna: International Atomic Energy Agency, Educational Report Series; 2003.Search in Google Scholar

[19] Godden TJ. Gamma radiation from cobalt 60 teletherapy Units. Br J Radiol Suppl. 1983;17:45-49.Search in Google Scholar

[20] McKenzie AL. Cobalt-60 gamma-ray beams. Br J Radiol Suppl. 1996;25:46-61.Search in Google Scholar

[21] Grosswendt B. Dependence of the photon backscatter factor for water on source-to-phantom distance and irradiation field size. Phys Med Biol. 1990;35(9):1233-1245.10.1088/0031-9155/35/9/004Search in Google Scholar

[22] Br J Radiol Suppl. 1996;25.Search in Google Scholar

[23] IAEA. Commisioning and quality assurance of computerized planning systems for radiation treatment of cancer. Vienna: International Atomic Energy Agency, Technical Reports Series TRS-430; 2004. Search in Google Scholar

eISSN:
1898-0309
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics