Cite

1. Chowdhury, M., Mostafa, M., Biswas, T.K. & Saha, A.K. 2013. Treatment of leather industrial effluents by filtration and coagulation processes. Water Res. Ind. 3, 11–22. DOI: 10.1016/j.wri.2013.05.002.10.1016/j.wri.2013.05.002Search in Google Scholar

2. Honnannavar, S.M. & Hosamani, S.R. 2014. Comparison of activated and inactivated coconut husk as an adsorbent for removal of hexavalent chromium from wastewater. J. Chem. Pharm. Res. 6, 2628–2633. http://jocpr.com/vol6-iss6-2014/JCPR-2014-6-6-2628-2633.pdfSearch in Google Scholar

3. Kerger, B.D., Paustenbach, D.J., Corbett, G.E. & Finley, B.L. 1996. Absorption and elimination of trivalent and hexavalent chromium in humans following ingestion of a bolus dose in drinking water. Toxicol. Appl. Pharm. 141, 145–158. http://dx.doi.org/10.1016/S0041-008X(96)80020-210.1016/S0041-008X(96)80020-2Search in Google Scholar

4. Gomez, V. & Callao, M. 2006. Chromium determination and speciation since 2000. TrAC Trends Anal. Chem. 25, 1006–1015. DOI: 10.1016/j.trac.2006.06.010.10.1016/j.trac.2006.06.010Search in Google Scholar

5. Barrera-Díaz, C.E., Lugo-Lugo, V. & Bilyeu, B. 2012. A review of chemical, electrochemical and biological methods for aqueous Cr (VI) reduction. J. Hazard. Mater. 223, 1–12. DOI: 10.1016/j.jhazmat.2012.04.054.10.1016/j.jhazmat.2012.04.05422608208Search in Google Scholar

6. Chen, D., Zhang, J. & Chen, J. 2010. Adsorption of methyl tert-butyl ether using granular activated carbon: Equilibrium and kinetic analysis. Int. J. Environ. Sci. Tech. 7, 235–242. DOI: 10.1007/BF03326133.10.1007/BF03326133Search in Google Scholar

7. Kennedy, L.J., Vijaya, J.J. & Sekaran, G. 2004. Effect of two-stage process on the preparation and characterization of porous carbon composite from rice husk by phosphoric acid activation. Ind. Eng. Chem. Res. 43, 1832–1838. DOI: 10.1021/ie034093f.10.1021/ie034093fSearch in Google Scholar

8. Sivakumar, D. 2013. Experimental and analytical model studies on leachate volume computation from solid waste. Int. J. Environ. Sci. Technol. 10, 903–916. DOI: 10.1007/s13762-012-0083–1.10.1007/s13762-012-0083-1Search in Google Scholar

9. Akbal, F. & Camcı, S. 2012. Treatment of metal plating wastewater by electrocoagulation. Environ. Prog. Sustain. Energy. 31, 340–350. DOI: 10.1002/ep.10546.10.1002/ep.10546Search in Google Scholar

10. Kurniawan, T.A., Chan, G.Y.S., Lo, W.H. & Babel, S. 2006. Physico–chemical treatment techniques for wastewater laden with heavy metals. Chem. Eng. J. 118, 83–98. DOI: 10.1016/j.cej.2006.01.015.10.1016/j.cej.2006.01.015Search in Google Scholar

11. Mohan, D., Rajput, S., Singh, V.K., Steele, P.H. & Pittman, C.U. 2011. Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent. J. Hazard. Mater. 188, 319–333. DOI: 10.1016/j.jhazmat.2011.01.127.10.1016/j.jhazmat.2011.01.12721354700Search in Google Scholar

12. Dave, P.N., Pandey, N. & Thomas, H. 2012. Adsorption of Cr (VI) from aqueous solutions on tea waste and coconut husk. Indian J. Chem. Technol. 19, 111–117.Search in Google Scholar

13. Jain, R.N., Patil, S. & Lal, D. 2014. Adsorption of Cr (VI) from aqueous environment using neem leaves powder. Int. J. Res. Eng. Tech. 3. http://esatjournals.net/ijret/2014v03/i21/IJRET20140321007.pdf10.15623/ijret.2014.0321007Search in Google Scholar

14. Mutongo, F., Kuipa, O. & Kuipa, P.K. 2014. Removal of Cr (VI) from aqueous solutions using powder of potato peelings as a low cost sorbent. Bioinor. Chem. Appl. 2014. DOI: 10.1155/2014/973153.Search in Google Scholar

15. Gao, H., Liu, Y., Zeng, G., Xu, W., Li, T. and Xia, W. 2008. Characterization of Cr(VI) removal from aqueous solutions by a surplus agricultural waste-rice straw. J. Hazard. Mater. 150, 446–452. DOI: 10.1016/j.jhazmat.2007.04.126.10.1016/j.jhazmat.2007.04.12617574737Search in Google Scholar

16. Ahmad, R., Rao, R.A.K. & Masood, M.M. 2005. Removal and recovery of Cr (VI) from synthetic and industrial wastewater using bark of Pinus roxburghii as an adsorbent. Water Qual. Res. J. Can. 40, 462–468.Search in Google Scholar

17. Ahalya, N.K., R.D. & Ramachandra, T.V. 2005. Biosorption of chromium (VI) from aqueous solutions by the husk of Bengal gram (Cicer arientinum). Electron. J. Biotech. 8, 258–264. DOI: 10.2225/vol8-issue3-fulltext–10.10.2225/vol8-issue3-fulltext-10Search in Google Scholar

18. Garg, U.K., Kaur, M., Garg, V. & Sud, D. 2007. Removal of hexavalent chromium from aqueous solution by agricultural waste biomass. J. Hazard. Mater. 140, 60–68. DOI: 10.1016/j.jhazmat.2006.06.056.10.1016/j.jhazmat.2006.06.05616879918Search in Google Scholar

19. Lu, M., Guan, X.H., Xu, X.H. & Wei, D.Z. 2013. Characteristic and mechanism of Cr(VI) adsorption by ammonium sulfamate-bacterial cellulose in aqueous solutions. Chinese Chem. Lett. 24, 253–256. DOI: /10.1016/j.cclet.2013.01.03410.1016/j.cclet.2013.01.034Search in Google Scholar

20. Haroon, H., Ashfaq, T., Gardazi, S.M.H., Sherazi, T.A., Ali, M., Rashid, N. & Bilal, M. 2016. Equilibrium kinetic and thermodynamic studies of Cr(VI) adsorption onto a novel adsorbent of Eucalyptus camaldulensis waste: Batch and column reactors. Korean J. Chem. Eng. 33, 2898–2907. DOI: 10.1007/s11814-016-0160-0.10.1007/s11814-016-0160-0Search in Google Scholar

21. Park, D., Lim, Seong-Rin., Yun, Yeoung-Sang., Park, J. M. 2007. Reliable evidences that the removal mechanism of hexavalent chromium by natural biomaterials is adsorption-coupled reduction. Chemosphere 70, 298–305. DOI:10.1016/j.chemosphere.2007.06.007.10.1016/j.chemosphere.2007.06.00717644158Search in Google Scholar

22. Nharingo, T., Moyo, M. & Mahamadi, C. 2016. Kinetics and Equilibrium Studies on the Biosorption of Cr(VI) by Vigna Subterranean (L.) Verdc Hull. Int. J. Environ. Res. 10, 85–96.Search in Google Scholar

23. Lin, C., Qiao, S., Luo, W., Liu, Y., Liu, D., Li, X. & Liu, M., 2014. Thermodynamics, Kinetics, and Regeneration Studies for Adsorption of Cr (VI) from Aqueous Solutions using Modified Cellulose as Adsorbent. BioResources 9, 6998–7017. DOI: 10.15376/biores.9.4.6998-7017.10.15376/biores.9.4.6998-7017Search in Google Scholar

24. Aliabadi, M., Khazaei, I., Fakhraee, H. & Mousavian, M. 2012. Hexavalent chromium removal from aqueous solutions by using low-cost biological wastes: equilibrium and kinetic studies. Int. J. Environ. Sci. Tech. 9, 319–326. DOI: 10.1007/s13762-012-0045-7.10.1007/s13762-012-0045-7Search in Google Scholar

25. Tadesse, B., Teju, E. & Megersa, N. 2015. The Teff straw: a novel low-cost adsorbent for quantitative removal of Cr (VI) from contaminated aqueous samples. Desalin. Water Treat. 56, 2925–2936. DOI:10.1080/19443994.2014.968214.10.1080/19443994.2014.968214Search in Google Scholar

26. Singh, V., Ram, C. & Kumar. A. 2016. Physico-chemical characterization of electroplating industrial effluents of Chandigarh and Haryana Region. J. Civil. Environ. Eng. 6, 2–6. DOI: 10.4172/2165-784X.100023710.4172/2165-784X.1000237Search in Google Scholar

27. Verma, S.K., Khandegar, V. & Saroha, Anil-K. 2013. Removal of chromium from electroplating industry effluent using electrocoagulation. J. Hazard. Toxic Radioact. Waste. 17, 146–152. DOI: 10.1061/(ASCE)HZ.2153-5515.0000170.10.1061/(ASCE)HZ.2153-5515.0000170Search in Google Scholar

eISSN:
1899-4741
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering