Cite

1. Pigeot-Rémy, S., Simonet, F., Errazuriz-Cerda, E., Lazzaroni, J.C., Atlan, D. & Guillard, C. (2011). Photocatalysis and disinfection of water: Identification of potential bacterial targets. Appl. Catal., B. 104(3–4), 390–398. DOI: 10.1016/j.apcatb.2011.03.001.10.1016/j.apcatb.2011.03.001Search in Google Scholar

2. Grojec, A. (2015) (Eds.) Progress on sanitation and drinking water – 2015 update and MDG assessment, WHO Press 2015.Search in Google Scholar

3. Wang, W., Huang, G., Yu, J.C. & Wong, P.K. (2015). Advances in photocatalytic disinfection of bacteria: Development of photocatalysts and mechanisms. J. Environ. Sci. 34, 232–247. DOI: 10.1016/j.jes.2015.05.003.10.1016/j.jes.2015.05.003Search in Google Scholar

4. Huaa, G. & Reckhow, D.A. (2007). Comparison of dis-infection byproduct formation from chlorine and alternative disinfectants. Water Res. 41(8), 1667–1678. DOI: 10.1016/j.watres.2007.01.032.10.1016/j.watres.2007.01.032Search in Google Scholar

5. Gunten, U. (2003). Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Res. 37(8), 1443–1467. DOI: 10.1016/S0043-1354(02)00457-8.10.1016/S0043-1354(02)00457-8Search in Google Scholar

6. Lazar, M.J., Varghese, S. & Nair, S.S. (2012). Photocatalytic water treatment by titanium dioxide: recent updates. Catalysts 2(4), 527–601. DOI: 10.3390/catal2040572.10.3390/catal2040572Search in Google Scholar

7. Nakata, K. & Fujishima, A. (2012). TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol. C: Photochem. Rev. 13(3), 169–189. DOI: 10.1016/j.jphotochemrev.2012.06.001.10.1016/j.jphotochemrev.2012.06.001Search in Google Scholar

8. Augugliaroa, V., Bellarditaa, M., Loddoa, V., Palmisanoa, G., Palmisanoa, L. & Yurdakal, S. (2002). Overview on oxidation mechanisms of organic compounds by TiO2 in heterogeneous photocatalysis. J. Photochem. Photobiol. C: Photochem. Rev. 13(3), 224–245. DOI: 10.1016/j.jphotochemrev.2012.04.003.10.1016/j.jphotochemrev.2012.04.003Search in Google Scholar

9. Olmez, H. & Kretzschmar, U. (2009). Potential alternative disinfection methods for organic fresh-cut industry for minimizing water consumption and environmental impact. Food Sci. Techn. 42(3), 686–693. DOI: 10.1016/j.lwt.2008.08.001.10.1016/j.lwt.2008.08.001Search in Google Scholar

10. Chong, M.N., Jin, B., Chow, C.W.K. & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: A review. Water Res. 44(10), 2997–3027. DOI: 10.1016/j.watres.2010.02.039.10.1016/j.watres.2010.02.03920378145Search in Google Scholar

11. Mccullagh, C., Robertson, J.M.C., Bahnemann, D.W. & Robertson, P.K.J. (2007). The application of TiO2 photocatalysis for disinfection of water contaminated with pathogenic microorganism: a review. Res. Chem. Intermed. 33(3), 359–375. DOI: 10.1163/156856707779238775.10.1163/156856707779238775Search in Google Scholar

12. Malato, S., Fernández-Ibáñez, P., Maldonado, M.I., Blanco, J. & Gernjak, W. (2009). Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Cat. Today 147(1), 1–60. DOI: 10.1016/j.cattod.2009.06.018.10.1016/j.cattod.2009.06.018Search in Google Scholar

13. Kowalska, E., Mahaney, O.O.P., Abe, R. & Ohtani, B. (2010). Visible-light-induced photocatalysis through surface plasmon excitation of gold on titania surfaces. Phys. Chem. Chem. Phys. 12, 2344–2355. DOI: 10.1039/B917399D.10.1039/b917399d20449347Search in Google Scholar

14. Wang, P., Huang, B., Qin, X., Zhang, X., Dai, Y., Wei, J. & Whangbo, M.H. (2008). Ag@AgCl: A highly efficient and stable photocatalyst active under visible light. Angew. Chem. Int. Edit. 47(41), 7931–7933. DOI: 10.1002/anie.200802483.10.1002/anie.20080248318773395Search in Google Scholar

15. Morawski, A.W., Janus, M., Tryba, B., Inagaki, M. & Kałucki, K. (2006). TiO2 – anatase modified by carbon as the photocatalyst under visible light. CR Chim. 9(5–6), 800–805. DOI: 10.1016/j.crci.2005.03.021.10.1016/j.crci.2005.03.021Search in Google Scholar

16. Zhou, N., Polavarapu, L., Gao, N., Pan, Y., Yuan, P., Wangbc, G. & Xu, Q.H. (2013). TiO2 coated Au/Ag nanorods with enhanced photocatalytic activity under visible light irradiation. Nanoscale 5, 4236–4241. DOI: 10.1039/C3NR00517H.10.1039/c3nr00517h23546548Search in Google Scholar

17. Ilieva, V., Tomovaa, D., Rakovskya, S., Eliyas, A. & Li Puma, G. (2010). Enhancement of photocatalytic oxidation of oxalic acid by gold modified WO3/TiO2 photocatalysts under UV and visible light irradiation. J. Mol. Catal. A-Chem. 327(1–2), 51–57. DOI: 10.1016/j.molcata.2010.05.012.10.1016/j.molcata.2010.05.012Search in Google Scholar

18. Ohno, T., Akiyoshi, M., Umebayashi, T., Asai, K., Mitsui, T. & Matsumura, M. (2004). Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl. Cat. A-General 265(1), 115–121. DOI: 10.1016/j.apcata.2004.01.007.10.1016/j.apcata.2004.01.007Search in Google Scholar

19. Janus, M., Markowska-Szczupak, A., Kusiak-Nejman, E. & Morawski, A.W. (2012). Disinfection of E. coli by carbon modified TiO2 photocatalysts. Environ. Prot. Eng. 38(2), 89–97. DOI: 10.5277/epe120208.Search in Google Scholar

20. Ohno, T., Sarukawa, K. & Matsumura, M. (2001). Photo-catalytic activities of pure rutile particles isolated from TiO2 powder by dissolving the anatase component in HF solution. J. Phys. Chem. B 105(12), 2417–2420. DOI: 10.1021/jp003211z.10.1021/jp003211zSearch in Google Scholar

21. Benabbou, A.K., Derriche, Z., Felix, C., Lejeune, P. & Guillard, C. (2007). Photocatalytic inactivation of Escherischia coli: Effect of concentration of TiO2 and microorganism, nature, and intensity of UV irradiation. Appl. Cat. B: Environ. 76, 257–263. DOI: 10.1016/j.apcatb.2007.05.026.10.1016/j.apcatb.2007.05.026Search in Google Scholar

22. Hu, C., Lan, Y., Qu, J., Hu, X. & Wang, A. (2006). Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria. J. Phys. Chem. 110(9), 4066–4072. DOI: 10.1021/jp0564400.10.1021/jp056440016509698Search in Google Scholar

23. Shi, H., Li, G., Suna, H., Ana, T., Zhao, H. & Wong, P.K. (2014). Visible-light-driven photocatalytic inactivation of E. coli by Ag/AgX-CNTs (X = Cl, Br, I) plasmonic photocatalysts: Bacterial performance and deactivation mechanism. Appl. Cat.-B: Environ. 158–159, 301–307. DOI: 10.1016/j.apcatb.2014.04.033.10.1016/j.apcatb.2014.04.033Search in Google Scholar

24. Hadrup, N. & Lam, H.R. (2014). Oral toxicity of silver ions, silver nanoparticles and colloidal silver – A review. Regul. Toxicol. Pharmacol. 68(1), 1–7. DOI: 10.1016/j.yrtph.2013.11.002.10.1016/j.yrtph.2013.11.00224231525Search in Google Scholar

25. Kowalska, E., Wei, Z., Karabiyik, B., Herissan, A., Janczarek, M., Endo, M., Markowska-Szczupak, A., Remita, H. & Ohtani, B. (2015). Silver-modified titania with enhanced photocatalytic and antimicrobial properties under UV and visible light irradiation. Cat. Today 252, 136–142. DOI: 10.1016/j.cattod.2014.10.038.10.1016/j.cattod.2014.10.038Search in Google Scholar

26. Sütterlin, S. (2015). Aspects of Bacterial Resistance to Silver. Dissertations from the Faculty of Medicine 1084. Uppsala Universitet.Search in Google Scholar

27. Cheng, C.L., Sun, D.S., Chu, W.C., Tseng, Y.H., Ho, H.C., Wang, J.B., Chung, P.H., Chen, J.H., Tsai, P.J., Lin, N.T., Yu, M.S. & Chang, H.H. (2009). The effects of the bacterial interaction with visible-light responsive titania photocatalyst on the bacteridical performance. J. Biom. Sci. 16(1), 7. DOI: 10.1186/1423-0127-16-7.10.1186/1423-0127-16-7264497319272171Search in Google Scholar

28. Choina, J., Dolat, D., Kusiak, E., Janus, M. & Morawski, A.W. (2009). TiO2 modified by ammonia as a long lifetime photocatalyst for dyes decomposition. Pol. J. Chem. Technol. 11(4), 1–6. DOI: 10.2478/v10026-009-0035-9.10.2478/v10026-009-0035-9Search in Google Scholar

29. Bubacz, K., Choina, J., Dolat, D. & Morawski, A.W. (2010). Methylene blue and phenol photocatalytic degradation on nanoparticles of anatase TiO2. Pol. J. Environ. Stud. 19(4), 685–691.Search in Google Scholar

30. Nikaido, H. (2003). Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67(4), 593–656. DOI: 10.1128/MMBR.67.4.593-656.2003.10.1128/MMBR.67.4.593-656.200330905114665678Search in Google Scholar

31. Jiang, J., Oberdorster, G., Elder, A., Gelein, R., Mercer, P. & Biswas, P. (2008). Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology 2(1), 33–42. DOI: 10.1080/17435390701882478.10.1080/17435390701882478293508620827377Search in Google Scholar

32. Chen, D., Yang, D., Wang, Q. & Jiang, Z. (2006). Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles. Ind. Eng. Chem. Res. 45(12), 4110–4116. DOI: 10.1021/ie0600902.10.1021/ie0600902Search in Google Scholar

33. Yang, Y., Zhong, H. & Tian, C. (2010). Photocatalytic mechanisms of modified titania under visible light. Res. Chem. Intermed. 37, 91–102. DOI: 10.1007/s11164-010-0232-4.10.1007/s11164-010-0232-4Search in Google Scholar

eISSN:
1899-4741
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering