Cite

1. Ansari, S.A. & Husain, Q. (2012). Potential applications of enzymes immobilized on/in nano materials: A review. Biotechnol. Adv. 30(3), 512–523. DOI: 10.1016/j.biotechadv.2011.09.005.10.1016/j.biotechadv.2011.09.005Search in Google Scholar

2. Chibber, S., Ansari, S.A. & Satar, R. (2013). New vision to CuO, ZnO, and TiO2 nanoparticles: their outcome and effects. J. Nan. Res. 15(4), 1–13. DOI: 10.1007/s11051-013-1492-x.10.1007/s11051-013-1492-xSearch in Google Scholar

3. Rao, J.P. & Geckeler, K.E. (2011). Polymer nanoparticles: Preparation techniques and size-control parameters. Prog. Polym. Sci. 36(7), 887–913. DOI: 10.1016/j.progpolymsci.2011.01.001.10.1016/j.progpolymsci.2011.01.001Search in Google Scholar

4. Nitta, S.K. & Numata, K. (2013). Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int. J. Mol. Sci. 14(1), 1629–1654. DOI: 10.3390/ijms14011629.10.3390/ijms14011629Search in Google Scholar

5. Nair, L.S. & Laurencin C.T. (2007). Biodegradable polymers as biomaterials. Prog. Polym. Sci. 32(8–9), 762–798. DOI: 10.1016/j.progpolymsci.2007.05.017.10.1016/j.progpolymsci.2007.05.017Search in Google Scholar

6. Zhang, H., Wang, D., Butler, R., Campbell, N.L., Long, J., Tan, B., Duncalf, D.J., Foster, A.J., Hopkinson, A., Taylor, D., Angus, D., Cooper, AI. & Rannard, S.P. (2008). Formation and enhanced biocidal activity of water dispersable organic nanoparticles. Nat. Nanotechnol. 3(3), 506–511. DOI: 10.1038/nnano.2008.188.10.1038/nnano.2008.188Search in Google Scholar

7. Wan, W. & Yeow, J.T.W. (2012). Antibacterial properties of poly (quaternary ammonium) modified gold and titanium dioxide nanoparticles. J. Nan. Nanotechnol. 12(6), 4601–4606. DOI: http://dx.doi.org/10.1166/jnn.2012.6147.Search in Google Scholar

8. Blackburn, C.D. & Davies, A.R. (1994). Development of antibiotic-resistant strains for the enumeration of foodborne pathogenic bacteria in stored foods. Int. J. Food Microbiol. 24(1–2), 125–136. DOI: 10.1016/0168-1605(94)90112-0.10.1016/0168-1605(94)90112-0Search in Google Scholar

9. Rizzello, L., Cingolani, R. & Pompa, P.P. (2013). Nanotechnology tools for antibacterial materials. Nanomed. 8(5), 807–821. DOI: 10.2217/nnm.13.63.10.2217/nnm.13.63Search in Google Scholar

10. Denyer, S.P. & Stewart, G.S.A.B. (1998). Mechanisms of action of disinfectants. Int. Biodet. Biodegrad. 41(3–4), 261–268. DOI: 10.1016/S0964-8305(98)00023-7.10.1016/S0964-8305(98)00023-7Search in Google Scholar

11. Chen, C.Z., Beck-Tan, N.C. & Cooper, S.L. (1999). Incorporation of dimethyl-dodecyl ammonium chloride functionalities onto poly(propylene imine) dendrimers significantly enhances their antibacterial properties. Chem. Commun. 16(5), 1585–1586. DOI: 10.1016/S02684-8305(99)00048-7.Search in Google Scholar

12. Chen, C.Z., Beck-Tan, N.C., Dhurjati, P.T.K., van Dyk, R.A., Larossa, P. & Cooper, S.L. (2000). Quaternary ammonium functionalized poly(propylene imine) dendrimers as effective antimicrobials: structure-activity studies. Biomacromol. 1(3), 473–480. DOI: 10.1021/bm0055495.10.1021/bm0055495Search in Google Scholar

13. Ioannou, C.J., Hanlon, G.W. & Denyer, S.P. (2007). Action of disinfectant quaternary ammonium compounds against Staphylococcus. Antimicrob. Ag. Chemother. 51(1), 296–306. DOI: 10.1128/AAC.00375-06.10.1128/AAC.00375-06Search in Google Scholar

14. McBain, A.J., Ledder, R.G., Moore, L.E., Catrenich C. & Gilbert, P. (2004). Effects of quaternary-ammonium-based formulations on bacterial community dynamics and antimicrobial susceptibility. Appl. Environ. Microbiol. 70(6), 3449–3456. DOI: 10.1128/AEM.70.6.3449-3456.2004.10.1128/AEM.70.6.3449-3456.2004Search in Google Scholar

15. Wang, N., Wu, X.S. & Mesiha, M. (1995). A new method for preparation of protein-loaded agarose nanoparticles. Pharmacol. Res. 12(3), 257. DOI: 10.1016/j.nano.2005.12.003.10.1016/j.nano.2005.12.003Search in Google Scholar

16. Wang, N. & Wu, X.S. (1997). Preparation and characterization of agarose hydrogel nanoparticles for protein and peptide drug delivery. Pharm. Dev. Technol. 2(2), 135–142. DOI: 10.3109/10837459709022618.10.3109/10837459709022618Search in Google Scholar

17. Kunkel, J. & Asuri, P. (2014). Function, structure and stability of enzymes confined in agarose gels. Plos One 9(5), e86785. DOI: 10.1371/journal.pone.0086785.10.1371/journal.pone.0086785Search in Google Scholar

18. Zhang, X., Yan, S., Tyagi, R.D. & Surampalli, R.Y. (2011). Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 82(4), 489–494. DOI: 10.1016/j.chemosphere.2010.10.023.10.1016/j.chemosphere.2010.10.023Search in Google Scholar

19. Doktycz, M.J., Sullivan, C.J., Hoyt, P.R., Pelletier, D.A., Wud, S. & Allison, D.P. (2003). AFM imaging of bacteria in liquid media immobilized on gelatin coated mica surfaces. Ultramicroscopy 97(1–4), 209–216. DOI: 10.1016/S0304-3991(03)00045-7.10.1016/S0304-3991(03)00045-7Search in Google Scholar

20. Brayner, R., Ferrari-Iliou, R., Brivois, N., Djediat, S., Benedetti, M.F. & Fievet, F. (2006). Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 6(4), 866–870. DOI: 10.1021/nl052326h.10.1021/nl052326h16608300Search in Google Scholar

21. Kim, M.H., Yamayoshi, I., Mathew, S., Liln, H., Nayfach, J. & Simon, S.I. (2013). Magnetic nanoparticle targeted hyperthermia of cutaneous Staphylococcus aureus infection. Ann. Biomed. Eng. 41(3), 598–609. DOI: 10.1007/s10439-012-0698-x.10.1007/s10439-012-0698-x374055723149904Search in Google Scholar

eISSN:
1899-4741
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering