Cite

1. Hegelich, B. M., Albright, B. J., Cobble, J., Flippo, K., Letzring, S., Paffett, M., Ruhl, H., Schreiber, J., Schulze, R. K., & Fernández, J. C. (2006). Laser acceleration of quasi-monoenergetic MeV ion beams. Nature, 439(7075), 441-444.Search in Google Scholar

2. Torrisi, L. (2015). Ion acceleration from intense laser generated plasma: methods, diagnostics and possible applications. Nukleonika, 60(2), 207-212.10.1515/nuka-2015-0051Search in Google Scholar

3. Robinson, A. P. L., Zepf, M., Kar, S., Evans, R. G., & Bellei, C. (2008). Radiation pressure acceleration of thin foils with circularly polarized laser pulses. New J. Phys., 10, 013021.10.1088/1367-2630/10/1/013021Search in Google Scholar

4. Eliezer, S. (Ed). (2002). The interaction of high- -power lasers with plasmas. Bristol: Institute of Physics Publishing.10.1887/0750307471Search in Google Scholar

5. Jackel, O., Polz, J., Pfotenhauer, S. M., Schlenvoigt, H. P., Schwooerer, H., & Kaluza, M. C. (2010). All optical measurement of the hot electron sheath driving laser ion acceleration from thin foils. New J. Phys., 12, 103027.10.1088/1367-2630/12/10/103027Search in Google Scholar

6. Garcia, M. A. (2011). Surface plasmons in metallic nanoparticles: fundamentals and applications. J. Phys. D-Appl. Phys., 44, 283001.10.1088/0022-3727/44/28/283001Search in Google Scholar

7. Torrisi, L., Cutroneo, M., & Ceccio, G. (2015). Effects of metallic nanoparticles in thin foils for laser ion acceleration. Phys. Scr., 90(1), 015603.10.1088/0031-8949/90/1/015603Search in Google Scholar

8. Oldenburg, S. J., Averitt, R. D., Westcott, S. L., & Halas, N. J. (1998). Nanoengineering of optical resonances. Chem. Phys. Lett., 288, 243-247.10.1016/S0009-2614(98)00277-2Search in Google Scholar

9. Cutroneo, M., Musumeci, P., Zimbone, M., Torrisi, L., La Via, F., Margarone, D., Velyhan, A., Ullschmied, J., & Calcagno, L. (2013). High performance SiC detectors for MeV ion beams generated by intense pulsed laser plasmas. J. Mater. Res., 28(1), 87-93.10.1557/jmr.2012.211Search in Google Scholar

10. Cutroneo, M., Torrisi, L., Cavallaro, S., Ando’, L., & Velyhan, A. (2014). Thomson parabola spectrometer of laser generated plasma at PALS laboratory. J. Phys. Conf. Series, 508, 012020.Search in Google Scholar

11. Torrisi, L., Margarone, D., Laska, L., Krasa, J., Velyhan, A., Pfeifer, M., Ullschmied, J., & Ryc, L. (2008). Self-focusing effect in Au-target induced by high power pulsed laser at PALS. Laser Part. Beams, 26, 379-387.10.1017/S0263034608000396Search in Google Scholar

12. Laska, L., Jungwirth, K., Krasa, J., Krousky, E., Pfeifer, M., Rohlena, K., Ullschmied, J., Badziak, J., Parys, P., Wolowski, J., Gammino, S., Torrisi, L., & Boody, F. P. (2006). Self-focusing in processes of laser generation of highly-charged and high-energy heavy ions. Laser Part. Beams, 24(1), 175-179.10.1017/S0263034606060253Search in Google Scholar

13. Torrisi, L., Calcagno, L., Giulietti, D., Cutroneo, M., Zimbone, M., & Skala, J. (2015). Laser irradiation of advanced targets promoting absorption resonance for ion acceleration in TNSA regime. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 355, 221-226.Search in Google Scholar

eISSN:
0029-5922
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other