Acceso abierto

Concepts and Methods of Mathematical Modelling of Plant Growth and Development. Plant Germination – Part II


Cite

Aggarwal, P.K. (1993). Agro-ecological zoning using crop growth simulation models: characterization of wheat environments in India. F.W.T. Penning de Vries, P. Teng, K. Metselaar (Eds.), Systems approaches for sustainable agricultural development, Kluwer Academic Publishers, Dordrecht, The Netherlis, 97-109.Search in Google Scholar

Aggarwal, P.K., Kalra, N. (1994). Analyzing the limitations set by climatic factors, genotype, and water and nitrogen availability on productivity of wheat II. Climatically potential yields and management strategies. Field Crops Research, 38, 93-103.10.1016/0378-4290(94)90003-5Search in Google Scholar

Angus, J.F., Cunningham, R.B., Moncur, M.W., Mackenzie, D.H. (1981). Phasic development in field crops. I. Thermal response in the seedling phase. Field Crops Research, 3, 365-378.10.1016/0378-4290(80)90042-8Search in Google Scholar

Benech Arnold, R.L., Ghersa, C.M., Sanchez, R.A., Insausti, P. (1990). A mathematical model to predict Sorghum halepense (L.) Pers. seedling emergence in relation to soil temperature. Weed Research, 30, 91-99.10.1111/j.1365-3180.1990.tb01691.xSearch in Google Scholar

Berge, N., Samaan, M., Juanole, G., Atamna J. (1994). Methodology for LAN modelling and analysis using Petri net based models. Proc. Int. Workshop on Modelling, Analysis and Simulation in Telecommunication Systems, Durham, NC, 269-275.Search in Google Scholar

Bouman, B.A.M., van Keulen, H., van Laar, H.H., Rabbinge, R. (1996). The school of de Wit crop growth simulation models: a pedigree and historical overview Agricultural Systems, 52(2/3), 171-198.10.1016/0308-521X(96)00011-XSearch in Google Scholar

Boydston, R.A. (1989). Germination and emergence of longspine sibur (Cenchrus longispinus). Weed Science, 37, 63-67.10.1017/S0043174500055867Search in Google Scholar

Bradford, K.J. (1995). Water relations in seed germination. In: Kigel, J., Galili, G. (Eds.), Seed Development i Germination. Marcel Dekker, New York, pp. 351-396.Search in Google Scholar

Brown, R.F., Mayer, D.G. (1988). Representing cumulative germination. 2. The use of the Weibull function and other empirically derived curves. Annals of Botany, 61, 127-138.10.1093/oxfordjournals.aob.a087535Search in Google Scholar

Carberry, P.S., Campbell, L.C. (1989). Temperature parameters useful for modeling the germination and emergence of pearl millet. Crop Science, 29, 220-223.10.2135/cropsci1989.0011183X002900010047xSearch in Google Scholar

Carberry, P.S., Muchow, R.C., McCown, R.L. (1993). A simulation model of kenaf for assisting fibre industry planning in northern Australia. IV. Analysis of climatic risk. Australian Journal of Agricultural Research, 44, 713-730.10.1071/AR9930713Search in Google Scholar

Cieśla A., Kraszewski, W., Skowron, M., Syrek P. (2015). Wpływ działania pola magnetycznego na kiełkowanie nasion. Przegląd Elektrotechniczny, 91(1), 125-128.Search in Google Scholar

Colbach, N., Debaeke, P. (1998). Integrating crop management and crop rotation effects into models of weed population dynamics: a review. Weed Science, 46, 717-728.10.1017/S0043174500089761Search in Google Scholar

Colbach, N., Dürr, C., Roger-Estrade, J., Caneill, J. (2005). How to model the effects of farming practices on weed emergence. Weed Research, 45, 2-17.10.1111/j.1365-3180.2004.00428.xSearch in Google Scholar

Cousens, R., Moss, S.R. (1990). A model of the effects of cultivation on the vertical distribution of weed seeds within the soil. Weed Research, 30, 61-70.10.1111/j.1365-3180.1990.tb01688.xSearch in Google Scholar

Cussans, G.W., Raudonius, S., Brain, P., Cumberworth, S. (1996). Effects of depth of seed burial and soil aggregate size on seedling emergence of Alopecurus myosuroides, Galiumaparine, Stellaria media, i wheat (Triticum aestivum). Weed Research, 36, 133-142.10.1111/j.1365-3180.1996.tb01809.xSearch in Google Scholar

Evans, E.J., Ludeke, F. (1987). Effect of sowing date on the flower and pod development of four winter oilseed rape cultivars. Annals of Applied Biology, 110, 170-171.Search in Google Scholar

Fidanza, M., Dernoeden, P.H., Zhang, M. (1996). Degree-days for predicting smooth crabgrass emergence in cool-season turf. Crop Science, 36, 990-996.10.2135/cropsci1996.0011183X0036000400029xSearch in Google Scholar

Forcella, F. (1993). Seedling emergence model for velvetleaf. Agronomy Journal, 85, 929-933.10.2134/agronj1993.00021962008500040026xSearch in Google Scholar

Forcella, F. (1998). Real-time assessment of seed dormancy and seedling growth for weed management. Seed Science Research, 8, 201-209.10.1017/S0960258500004116Search in Google Scholar

Forcella, F., Benech-Arnold, R.L., Sánchez, R.A., Ghersa, C.M. (2000). Modeling seedling emergence. Field Crops Research, 67, 123-139.10.1016/S0378-4290(00)00088-5Search in Google Scholar

Forcella, F., Durgan, B.R., Buhler, D.D. (1996). Management of weed seedbanks. In: Streibig, J. (Ed.), Proceedings of the Second International Weed Control Congress. International Weed Science Society, Copenhagen, 21-26.Search in Google Scholar

Francik, S., Ślipek, Z., Frączek, J., Knapczyk, A. (2016). Present trends in research on application of artificial neural networks in agricultural engineering. Agricultural Engineering, 20(4), 15-25.10.1515/agriceng-2016-0060Search in Google Scholar

Fyfield, T.P., Gregory, P.J. (1989). Effects of temperature and water potential on germination, radicle elongation and emergence of mungbean. Journal of Experimental Botany, 40, 667-674.10.1093/jxb/40.6.667Search in Google Scholar

Grundy, A.C. (2003). Predicting weed emergence: a review of approaches and future challenges. Weed Research, 43, 1-11.10.1046/j.1365-3180.2003.00317.xSearch in Google Scholar

Grundy, A.C., Mead, A., Bond, W. (1996). Modelling the effects of weed-seed distribution in the soil profile on seedling emergence. Weed Research, 36, 375-384.10.1111/j.1365-3180.1996.tb01667.xSearch in Google Scholar

Gummerson, R.J. (1986). The effect of constant temperatures and osmotic potential on the germination of sugar beet. Journal of Experimental Botany, 37, 729-741.10.1093/jxb/37.6.729Search in Google Scholar

Habekotté, B. (1997). A model of the phenological development of winter oilseed rape. Field Crops Research, 54, 127-136.10.1016/S0378-4290(97)00043-9Search in Google Scholar

Hodges, T., Ritchie, J.T. (1991). The CERES-Wheat Phenology Model. Hodges T. (Ed.), Predicting Crop Phenology, CRC Press, Boston.Search in Google Scholar

Hodgson, A.S. (1978). Rapeseed adaptation in Northern New South Wales. II. Predicting plant development of Brassica campestris L. and Brassica napus L. and its implications for planting time, designed to avoid water deficit and frost. Australian Journal of Agricultural Research, 29, 711-726.Search in Google Scholar

Jakubowski, T. (2011). Model plonowania roślin ziemniaka (Solanum tuberosum L.) wyrosłych z sadzeniaków napromienionych mikrofalami. Acta Agrophysica, 17(2), 311-323.Search in Google Scholar

Keating, B.A., McCown, R.L., Wafula, B.M. (1993). Adjustment of nitrogen inputs in response to a seasonal forecast in a region of high climatic risk. F.W.T. Penning de Vries, P. Teng, K. Metselaar (Eds.), Systems approaches for sustainable agricultural development, Kluwer Academic Publishers, Dordrecht, The Netherlis.Search in Google Scholar

Kremer, E., Lotz, L.A. (1998). Germination and emergence characteristics of triazine-susceptible and triazine-resistant biotypes of Solanum nigrum. Journal of Applied Ecology, 35, 302-310.10.1046/j.1365-2664.1998.00302.xSearch in Google Scholar

Michałek, R. (2008). Przyszłość inżynierii rolniczej jako nauki i kierunku kształcenia. Inżynieria Rolnicza, 1(99), 297-302.Search in Google Scholar

Miglietta, F. (1992). Simulation of wheat ontogenesis. Ph.D. Thesis, Agricultural University Wageningen i Accademia deiGeorgofili, Italy.Search in Google Scholar

Myers, L.F., Christian, K.R., Kirchner, R.J. (1982). Flowering responses of 48 lines of oilseed rape (Brassica spp.) to vernalization i daylenth. Australian Journal of Agricultural Research, 33, 927-936.10.1071/AR9820927Search in Google Scholar

Oryokot, J.O.E., Murphy, D.D., Thomas, A.G., Swanton, C.J. (1997). Temperature- and moisterdependent models of seed germination and shoot elongation in green and redroot pigweed (Amaranthus powellii, A. retroflexus). Weed Science, 45, 488-496.10.1017/S0043174500088718Search in Google Scholar

Ritchie, J.T. (1993). Genetic specific data for crop modeling F. Penning de Vries, P. Teng, K. Metselaar (Eds.), Systems Approaches for Agricultural Development, Kluwer Academic Press, Boston. 77-93.Search in Google Scholar

Roberts, E.H., Summerfield R.J. (1987). Measurements i prediction of flowering in annual crops. Atherton J.G. (Ed.), Manipulation of Flowering, Butterworth, London.10.1016/B978-0-407-00570-9.50007-7Search in Google Scholar

Roman, E.S., Murphy, S.D., Swanton, C.J. (2000). Simulation of Chenopodium album seedling emergence. Weed Science, 48, 217-224.10.1614/0043-1745(2000)048[0217:SOCASE]2.0.CO;2Search in Google Scholar

Roman, E.S., Thomas, A.G., Murphy, S.D., Swanton, C.J. (1999). Modelling germination and seedling elongation of common lambsquarters (Chenopodium album). Weed Science, 47, 149-155.10.1017/S0043174500091554Search in Google Scholar

Rötter, R., Dreiser C. (1994). Extrapolation of maize fertiliser trial results by using crop-growth simulation: results for Murang'a District, Kenya. L.O. Fresco, L. Stroosnijder, J. Bouma, H. van Keulen (Eds.). The future of the li: mobilising and integrating knowledge for li use options, John Wiley & Sons Ltd, West Sussex, UK.Search in Google Scholar

Ungar, E.D. (1990). Management of agropastoral systems in a semiarid region Simulation Monographs. PUDOC, Wageningen, The Netherlis.Search in Google Scholar

Weir, A.H., Braggs, P.L., Porter, J.R., Rayner, J.H. (1984). A winter wheat crop simulation model without water or nutrient limitations. The Journal of Agricultural Science, 102, 371-382.10.1017/S0021859600042702Search in Google Scholar