Open Access

Hydrogeophysical investigation of groundwater potential and aquifer vulnerability prediction in basement complex terrain – A case study from Akure, Southwestern Nigeria


Cite

This study provides a model for the prediction of groundwater potential and vulnerability of basement aquifers in parts of Akure, Southwestern Nigeria. Hydrogeophysical surveys involving very-low-frequency electromagnetic (VLF-EM) profiling and electrical resistivity (ER) sounding, as well as evaluation of hydraulic gradient using three-point method, were carried out. Ten VLF-EM reconnaissance survey traverses, with lengths ranging from 55 m to 75 m, at 10 m station separation, and 12 vertical electrical sounding (VES) stations were occupied. Two-dimensional map of the filtered real component reveals areas of high conductivity, indicative of linear features that can serve as a reservoir or conduit for fluid flow. Interpretation of the VES results delineates three to four geoelectric units. Two aquifer zones were identified, with resistivity values in the ranges of 20 Ωm to 310 Ωm and 100 Ωm to 3,000 Ω m, respectively. Transverse resistance, longitudinal conductance, coefficient of anisotropy and hydraulic gradient have values ranging from 318.2 Ωm2 to 1,041.8 Ωm2, 0.11 mhos to 0.39 mhos, 1.04 to 1.74 and 0.017 to 0.05, respectively. The results of this study identified two prospective borehole locations and the optimum position to site the proposed septic system, based on the aquifer’s protective capacity and groundwater flow properties.