Zitieren

Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature 354, 56-58. doi:10.1038/354056a0.10.1038/354056a0Search in Google Scholar

Nesterenko, A.M., Kolesnik, N.F., Akhmatov, Y.S., Sukhomlin, V.I. & Prilutski, O.V. (1982). Metals 3 UDK 869.173.23, News of the Academy of Science, USSR, 12-16.Search in Google Scholar

Iijima, S. & Ichihashi, T. (1993). Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603-605. doi:10.1038/363603a0.10.1038/363603a0Search in Google Scholar

Bethune, D.S., Kiang, C.H., Devries, M.S., Gorman, G., Savoy, R. & Vazquez, J. et al. (1993). Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605-607. doi:10.1038/363605a0.10.1038/363605a0Search in Google Scholar

Ajayan, P.M. & Iijima, S. (1993). Capillarity-induced filling of carbon nanotubes. Nature 361, 333-334. doi:10.1038/361333a0.10.1038/361333a0Search in Google Scholar

Thostenson, E.T., Ren, Z.F., Chou, T.-W. (2001). Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61(13), 1899-1912. doi:10.1016/S0266-3538(01)00094-X.10.1016/S0266-3538(01)00094-XSearch in Google Scholar

Wildoer, J.W.G., Venema, L.C., Rinzler, A.G., Smalley, R.E. & Dekker, C. (1998). Electronic structure of atomically resolved carbon nanotubes. Nature 391, 59-62. doi:10.1038/34139.10.1038/34139Search in Google Scholar

Hone, J., Batlogg, B., Benes, Z., Johnson, A.T. & Fischer, J.E. (2000). Quantized Phonon Spectrum of Single-Wall Carbon Nanotubes. Science 289, 1730. doi: 10.1126/science.289.5485.1730.10.1126/science.289.5485.1730Search in Google Scholar

Ruoff, R.S. & Lorents, D.C. (1995). Mechanical and thermal properties of carbon nanotubes. Carbon 33(7), 925-930. doi:10.1016/0008-6223(95)00021-5.10.1016/0008-6223(95)00021-5Search in Google Scholar

Treacy, M.M.J., Ebbesen, T.W. & Gibson, J.M. (1996). Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 381, 678-680. doi:10.1038/381678a010.1038/381678a0Search in Google Scholar

Gojny, F.H., Wichmann, M.H.G., Fiedler, B. & Schulte, K. (2005). Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites - A comparative study. Compos. Sci. Technol. 65(15-16), 2300-2313. doi:10.1016/j.compscitech.2005.04.02110.1016/j.compscitech.2005.04.021Search in Google Scholar

Prolongo, S.G., Rosario, G. & Urena A. (2006). Comparative study on the adhesive properties of different epoxy resins. Int J Adhesion and Adhesives 26(3), 125-132. doi:10.1016/j.ijadhadh.2005.02.004.10.1016/j.ijadhadh.2005.02.004Search in Google Scholar

Neffgen, B. (1985). Epoxy resins in the building industry - 25 years of experience. Int J Cement Comp and Lightweight Concrete 7(4), 253-260. doi:10.1016/0262-5075(85)90046-6.10.1016/0262-5075(85)90046-6Search in Google Scholar

Toldy, A., Szolnoki, B. & Marosi, G. (2010) Flame retardancy of fibre-reinforced epoxy resin composites for aerospace applications. Polymer Degradation and Stability Article in Press. doi:10.1016/j.polymdegradstab.2010.03.021.10.1016/j.polymdegradstab.2010.03.021Search in Google Scholar

Kagathara, V.M. & Parsania, P.H. (2001) Preparation and evaluation of mechano-electrical properties and chemical resistance of epoxy laminates of halogenated bisphenol-C resins. Polymer Testing 20(6), 713-716. doi:10.1016/S0142-9418(00)00071-4.10.1016/S0142-9418(00)00071-4Search in Google Scholar

Atta, A.M., Abdou, M.I., Elsayed, A. & Raga M.E. (2008). New bisphenol novolac epoxy resins for marine primer steel coating applications. Progress in Organic Coatings 63(4), 372-376. doi:10.1016/j.porgcoat.2008.06.013.10.1016/j.porgcoat.2008.06.013Search in Google Scholar

Kovacs, J.Z., Andersen, K., Puls, J.R., Pardo Garcia, K., Schossig, M., Schulte, K. & Bauhofer, W. (2007). Analyzing the quality of carbon nanotube dispersions in polymers using scanning electron microscopy. Carbon 45(6), 1279-1288. doi:10.1016/j.carbon.2007.01.012.10.1016/j.carbon.2007.01.012Search in Google Scholar

Abdalla, M., Detrick, D., Adibempe, D., Nyairo, E., Robinson, P. & Thompson, G. (2007). The effect of interfacial chemistry on molecular mobility and morphology of multiwalled carbon nanotubes epoxy nanocomposite. Polymer 48(19), 5662-5670. doi:10.1016/j.polymer.2007.06.073.10.1016/j.polymer.2007.06.073Search in Google Scholar

Young, R.J. & Lucas, M. (2007). Effect of residual stresses upon the Raman radial breathing modes of nanotubes in epoxy composites. Compos. Sci. Technol. 67(5), 840-843. doi:10.1016/j.compscitech.2005.12.03110.1016/j.compscitech.2005.12.031Search in Google Scholar

Jianfeng, S., Weishi, H., Liping, W., Yizhe, H. & Mingxin, Y. (2007). Thermo-physical properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes. Comp. A 38, 1331-1336. doi:10.1016/j.compositesa.2006.10.012.10.1016/j.compositesa.2006.10.012Search in Google Scholar

Liu, J.Q., Xiao, T., Liao K. & Wu, P. (2007). Interfacial design of carbon nanotube polymer composites: a hybrid system of noncovalent and covalent functionalizations. Nanotechnology 18(16), 165701. doi:10.1088/0957-4484/18/16/165701.10.1088/0957-4484/18/16/165701Search in Google Scholar

Zhou, Y., Pervin, F., Lewis, L. & Jeelani, S. (2007). Experimental study on the thermal and mechanical properties of multi-walled carbon nanotube-reinforced epoxy. Mat. Sci. Eng. A 452, 657-664. doi:10.1016/j.msea.2006.11.06610.1016/j.msea.2006.11.066Search in Google Scholar

Gojny, F.H. & Schulte, K. (2004). Functionalisation effect on the thermo-mechanical behaviour of multi-wall carbon nanotube/epoxy-composites. Compos. Sci. Tech. 64(15), 2303. doi:10.1016/j.compscitech.2004.01.024.10.1016/j.compscitech.2004.01.024Search in Google Scholar

Hadjiev, V.G., Lagoudas, D.C., Oh, E.S., Thakre, P., Davis, D., Files, B.S., Yowell, L., Arepalli, S., Bahr, J.L. & Tour, J.M. (2006). Buckling instabilities of octadecylamine functionalized carbon nanotubes embedded in epoxy. Compos. Sci. Tech. 66(1), 128-136. doi:10.1016/j.compscitech.2005.01.004.10.1016/j.compscitech.2005.01.004Search in Google Scholar

Martin, C.A., Sandler, J.K.W., Windle, A.H., Schwarz, M.K., Baunhofer, W., Schulte, K. & Shaffer, M.S.P. (2005). Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites. Polymer 46(3), 877-886. doi:10.1016/j.polymer.2004.11.081.10.1016/j.polymer.2004.11.081Search in Google Scholar

Fidelus, J.D., Wiesel, E., Gojny, F.H., Schulte, K. & Wagner H.D. (2005). Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites. Comp. A 36(11), 1555-1561. doi:10.1016/j.compositesa.2005.02.006.10.1016/j.compositesa.2005.02.006Search in Google Scholar

Gojny, F.H., Wichmann, M.H.G., Fiedler, B., Bauhofer, W. & Schulte, K. (2005). Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites. Comp. A 36(11), 1525-1535. doi:10.1016/j.compositesa.2005.02.007.10.1016/j.compositesa.2005.02.007Search in Google Scholar

Potschke, P., Fornes, T.D. & Paul, D.R. (2002). Rheological behavior of multiwall carbon nanotubes/polycarbonate composites. Polymer 43, 3247-55. doi:10.1016/S0032-3861(02)00151-9.10.1016/S0032-3861(02)00151-9Search in Google Scholar

Mitchell, C.A., Bahr, J.L., Arepalli, S., Tour, J.M. & Krishnamoorti, R. (2002). Dispersion of functionalized carbon nanotubes in polystyrene. Macromolecules 35, 8825-30. doi: 10.1021/ma020890y.10.1021/ma020890ySearch in Google Scholar

Kim, J.A., Seong, D.G., Kang, T.J. & Youn, J.R. (2006). Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon 44(10), 1898-1905. doi:10.1016/j.carbon.2006.02.026.10.1016/j.carbon.2006.02.026Search in Google Scholar

Gojny, F.H., Nastalczyk, J., Rosłaniec, Z., Schulze, K. (2003). Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites. Chem. Phys. Lett. 370, 820-824. 10.2478/v10026-011-0027-410.1016/S0009-2614(03)00187-8Search in Google Scholar

eISSN:
1899-4741
ISSN:
1509-8117
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Biotechnologie, Chemieingenieurwesen, Verfahrenstechnik