Zitieren

1. Garlanda C, Dinarello CA, Mantovani A. The interleukin – 1 family: back to the future. Immunity. 2013;39(6):1003-1018.10.1016/j.immuni.2013.11.010393395124332029Open DOISearch in Google Scholar

2. Günther S et al. IL-1 Family Cytokines Use Distinct Molecular Mechanisms to Signal through Their Shared Co-receptor. Immunity. 2017 19;47(3):510-52310.1016/j.immuni.2017.08.004584908528930661Search in Google Scholar

3. Wasmer M-H, Krebs P. The Role of IL-33-Dependent Inflammation in the Tumor Microenvironment. Frontiers in Immunology. 2016;7:682.10.3389/fimmu.2016.00682Search in Google Scholar

4. Ali S, Mohs A, Thomas M, Klare J, Ross R, Schmitz ML, Martin MU. The dual function cytokine IL-33 interacts with the transcription factor NF-κB to dampen NF-κB-stimulated gene transcription. J Immunol. 2011;15;187(4):1609-16.10.4049/jimmunol.100308021734074Search in Google Scholar

5. Gadina M, Jefferies CA. IL-33: a sheep in wolf’s clothing? Sci STKE. 2007 Jun 12;2007:390.10.1126/stke.3902007pe3117565120Search in Google Scholar

6. Gao X et al. Tumoral expression of IL-33 inhibits tumor growth and modifies the tumor microenvironment through CD8+ T and NK cells. J Immunol. 2015 Jan 1;194(1):438-4510.4049/jimmunol.1401344427290125429071Search in Google Scholar

7. Lu B, Yang M, Wang Q. Interleukin-33 in tumorigenesis, tumor immune evasion, and cancer immunotherapy. J Mol Med; 2016;94(5):535-432692261810.1007/s00109-016-1397-026922618Search in Google Scholar

8. Dominguez D et al. Exogenous IL-33 Restores Dendritic Cell Activation and Maturation in Established Cancer. Immunol. 2017 1;198(3):1365-137510.4049/jimmunol.1501399526311328011934Search in Google Scholar

9. Amôr NG et al. ST2/IL-33 signaling promotes malignant development of experimental squamous cell carcinoma by decreasing NK cells cytotoxicity and modulating the intratumoral cell infiltrate. Oncotarget. 2018 Jul 20;9(56):30894-30904.10.18632/oncotarget.25768608939930112116Search in Google Scholar

10. Lin SH et al. Inflammation elevated IL-33 originating from the lung mediates inflammation in acute lung injury. Clin Immunol; 2016; 30535-6.10.1016/j.clim.2016.10.01427989898Search in Google Scholar

11. Yang M, Feng Y, Yue C, Xu B, Chen L, Jiang J, Lu B, Zhu Y. Lower expression level of IL-33 is associated with poor prognosis of pulmonary adenocarcinoma. PLoS One. 2018 2;13(3).10.1371/journal.pone.0193428583417529499051Search in Google Scholar

12. Chen J et al. Interleukin-33 Contributes to the Induction of Th9 Cells and Antitumor Efficacy by Dectin-1-Activated Dendritic Cells. Front Immunol. 2018 31;9:1787.10.3389/fimmu.2018.01787607924230108595Search in Google Scholar

13. Jovanovic I, Radosavljevic G, Mitrovic M, Juranic VL, McKenzie AN, Arsenijevic N, et al. (2011) ST2 deletion enhances innate and acquired immunity to murine mammary carcinoma. Eur J Immunol 41: 1902–1912.10.1002/eji.201141417374612721484786Open DOISearch in Google Scholar

14. Zhang Y et al. IL-33 promotes growth and liver metastasis of colorectal cancer in mice by remodeling the tumor microenvironment and inducing angiogenesis. Mol Carcinog 56: 272–287.10.1002/mc.22491563013627120577Search in Google Scholar

15. Ishikawa K et al. Expression of interleukin-33 is correlated with poor prognosis of patients with squamous cell carcinoma of the tongue. Auris Nasus Larynx. 2014 Dec;41(6):552-7.10.1016/j.anl.2014.08.00725193287Open DOISearch in Google Scholar

16. Chen SF et al. The paracrine effect of cancer-associated fibroblast-induced interleukin-33 regulates the invasiveness of head and neck squamous cell carcinoma. J Pathol. 2013 Oct;231(2):180-9.10.1002/path.422623775566Search in Google Scholar

17. Lu B, Yang M, Wang Q. Interleukin-33 in tumorigenesis, tumor immune evasion, and cancer immunotherapy. J Mol Med 94: 535–543.10.1007/s00109-016-1397-026922618Search in Google Scholar

18. Li J et al. Biliary repair and carcinogenesis are mediated by IL-33-dependent cholangiocyte proliferation. J Clin Invest. 2014; 124(7):3241-51.10.1172/JCI73742407137024892809Search in Google Scholar

19. Zhang JF et al. IL33 enhances glioma cell migration and invasion by upregulation of MMP2 and MMP9 via the ST2-NF-κB pathway. Oncol Rep. 2017 Oct;38(4):2033-2042.10.3892/or.2017.5926565295128849217Open DOISearch in Google Scholar

20. Xiao P et al. Interleukin 33 in tumor microenvironment is crucial for the accumulation and function of myeloid-derived suppressor cells. Oncoimmunology. 2015. 24;5(1)10.1080/2162402X.2015.1063772476033826942079Search in Google Scholar

21. Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBOJ. 1992 (11):3887-9510.1002/j.1460-2075.1992.tb05481.xSearch in Google Scholar

22. Park YJ, Kuen DS, Chung Y. Future prospects of immune checkpoint blockade in cancer: from response prediction to overcoming resistance. Exp Mol Med. 2018 22;50(8):109.10.1038/s12276-018-0130-1610567430135516Search in Google Scholar

23. Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev. 2010; 236: 219-242.10.1111/j.1600-065X.2010.00923.x291927520636820Search in Google Scholar

24. Ortler S et al. B7-H1 restricts neuroantigen-specific T cell responses and confines inflammatory CNS damage: implications for the lesion pathogenesis of multiple sclerosis. Eur J Immunol. 2008;38(6):1734-4410.1002/eji.20073807118421793Search in Google Scholar

25. Sharpe AH, Pauken KE. The diverse functions of the PD1 inhibitory pathway. Nat Rev Immunol. 2018;18(3):153-16710.1038/nri.2017.10828990585Search in Google Scholar

26. Zou W, Chen L. Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol. 2008; 8: 467-477.10.1038/nri232618500231Search in Google Scholar

27. Gupta PK et al. CD39 Expression Identifies Terminally Exhausted CD8+ T Cells. PLoS Pathog. 2015;11(10):e1005177.10.1371/journal.ppat.1005177461899926485519Search in Google Scholar

28. Starr R et al. A family of cytokine-inducible inhibitors of signalling. Nature. 1997; 387: 917-921.10.1038/432069202125Search in Google Scholar

29. Massari F et al. PD-1 blockade therapy in renal cell carcinoma: current studies and future promises. Cancer Treat Rev. 2015; 41: 114-121.10.1016/j.ctrv.2014.12.01325586601Search in Google Scholar

30. Ahmad SM et al. The inhibitory checkpoint, PD-L2, is a target for effector T cells: Novel possibilities for immune therapy. Oncoimmunology. 2017;7(2): e1390641.10.1080/2162402X.2017.1390641574966929308318Search in Google Scholar

31. Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev. 2010;236:219-42.10.1111/j.1600-065X.2010.00923.xSearch in Google Scholar

32. Reynolds J et al. Stimulation of the PD-1/PDL-1 T-cell co-inhibitory pathway is effective in treatment of experimental autoimmune glomerulonephritis. Nephrol Dial Transplant. 2012 Apr;27(4):1343-50.10.1093/ndt/gfr52921965585Search in Google Scholar

33. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008; 26:677–704.10.1146/annurev.immunol.26.021607.09033118173375Search in Google Scholar

34. White MPJ, Webster G, Leonard F, La Flamme AC. Innate IFN-γ ameliorates experimental autoimmune encephalomyelitis and promotes myeloid expansion and PDL-1 expression. Sci Rep. 2018 Jan 10;8(1):259.10.1038/s41598-017-18543-z576289129321652Search in Google Scholar

35. Rowe JH, Ertelt JM, Way SS. Innate IFN-γ is essential for programmed death ligand-1-mediated T cell stimulation following Listeria monocytogenes infection. J Immunol. 2012;189(2):876-84.10.4049/jimmunol.1103227340234222711893Search in Google Scholar

36. Riley JL. PD-1 signaling in primary T cells. Immunol Rev. 2009; 229: 114-125.10.1111/j.1600-065X.2009.00767.x342406619426218Search in Google Scholar

37. Okazaki T, Maeda A, Nishimura H, Kurosaki T, Honjo T. PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc Natl Acad Sci U S A. 2001; 98: 13866-13871.10.1073/pnas.2314865986113311698646Search in Google Scholar

38. Schlößer HA, Theurich S, Shimabukuro-Vornhagen A, Holtick U, Stippel DL, von Bergwelt-Baildon M. Overcoming tumor-mediated immunosuppression. Immunotherapy., 2014; 6: 973-98810.2217/imt.14.58Search in Google Scholar

39. Chen X et al. PD-1 regulates extrathymic regulatory T-cell differentiation. Eur J Immunol. 2014; 44: 2603-2616.10.1002/eji.201344423416570124975127Search in Google Scholar

40. Meng Y, Liang H, Hu J, Liu S, Hao X, Wong MSK, Li X, Hu L. PD-L1 Expression Correlates With Tumor Infiltrating Lymphocytes And Response To Neoadjuvant Chemotherapy In Cervical Cancer. J Cancer. 2018;9(16):2938-2945.10.7150/jca.22532609636430123362Search in Google Scholar

41. Kim JM, Chen DS. Immune escape to PD-L1/PD-1 blockade: seven steps to success (or failure). Ann Oncol. 2016;27(8):1492-504.10.1093/annonc/mdw21727207108Search in Google Scholar

42. Taube JM et al. Colocalization o inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med. 2012 28;4(127):12710.1126/scitranslmed.3003689356852322461641Search in Google Scholar

43. Cheng B, Yuan WE, Su J, Liu Y, Chen J. Recent advances in small molecule based cancer immunotherapy. Eur J Med Chem. 2018;157:582-598.10.1016/j.ejmech.2018.08.02830125720Search in Google Scholar

44. Ostrand-Rosenberg S, Horn LA, Haile ST. The programmed death-1 immune-suppressive pathway: barrier to antitumor immunity. J Immunol. 2014 Oct 15;193(8):3835-41.10.4049/jimmunol.1401572418542525281753Search in Google Scholar

45. Larkin J et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N Engl J Med. 2015;373(13): 1270-1.10.1056/NEJMc150966026398076Search in Google Scholar

46. Roger A et al. Efficacy of combined hypo-fractionated radiotherapy and anti-PD-1 monotherapy in difficult-to-treat advanced melanoma patients. Oncoimmunology. 2018;7(7): e1442166.10.1080/2162402X.2018.1442166605330030034949Search in Google Scholar

47. Zeng J, See AP, Phallen J, Jackson CM, Belcaid Z, Ruzevick J, Durham N, Meyer C, Harris TJ, Albesiano E, Pradilla G, Ford E, Wong J, Hammers HJ, Mathios D, Tyler B, Brem H, Tran PT, Pardoll D, Drake CG, Lim M. Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys. 2013;86(2):343-9.2346241910.1016/j.ijrobp.2012.12.025396340323462419Search in Google Scholar

48. Choi N, Shin DY, Kim HJ, Moon UY, Baek KH, Jeong HS. Postoperative anti-PD-1 antibody treatment to reduce recurrence in a cancer ablation surgical wound. J Surg Res. 2018;221:95-103.10.1016/j.jss.2017.08.02229229160Search in Google Scholar

49. Qin L et al. Exogenous IL-33 overcomes T cell tolerance in murine acute myeloid leukemia. Oncotarget. 2016;7(38):61069-61080.10.18632/oncotarget.11179530863627517629Search in Google Scholar

50. Blankenstein T, Coulie PG, Gilboa E, Jaffee EM. The determinants of tumour immunogenicity. Nat Rev Cancer. 2012 1;12(4):307-13.10.1038/nrc3246355260922378190Open DOISearch in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Medizin, Klinische Medizin, andere