Uneingeschränkter Zugang

Cost Effective Method for Toxicity Screening of Pharmaceutical Wastewater Containing Inorganic Salts and Harmful Organic Compounds


Zitieren

[1] Neumegen R. A., Fernández-Alba A. R., Chisti Y. Toxicities of Trichlosan, Phenol, and Copper Sulfate in Activated Sludge. Environmental Toxicology 2005:20(2):160–164. doi:10.1002/tox.2009010.1002/tox.2009015793824Open DOISearch in Google Scholar

[2] Davies P. S., Murdoch F. The increasing importance of assessing toxicity in determining sludge health and management policy. Measurement and Control 2002:35(8):238–242. doi:10.1177/00202940020350080410.1177/002029400203500804Search in Google Scholar

[3] Katritzky A. R., et al. Estimating the toxicities of organic chemicals in activated sludge process. Water Research 2010:44(8):2451–2460. doi:10.1016/j.watres.2010.01.00910.1016/j.watres.2010.01.00920153498Search in Google Scholar

[4] Jurga A., Gemza N., Janiak K. A concept development of an early warning system for toxic sewage detection. E3S Web of Conferences 2017:17(00036):1–8. doi:10.1051/e3sconf/2017170003610.1051/e3sconf/20171700036Open DOISearch in Google Scholar

[5] Sanganyado E., Lu Z., Fu Q., Schlenk D., Gan J. Chiral pharmaceuticals: A review on their environmental occurrence and fate processes. Water Research 2017:124:527–542. doi:10.1016/j.watres.2017.08.00310.1016/j.watres.2017.08.00328806704Open DOISearch in Google Scholar

[6] Kraigher B., Kosjek T., Heath E., Kompare B., Mandic-Mulec I. Influence of pharmaceutical residues on the structure of activated sludge bacterial communities in wastewater treatment bioreactors. Water Research 2008:42(17):4578–4588. doi:10.1016/j.watres.2008.08.00610.1016/j.watres.2008.08.00618786690Open DOISearch in Google Scholar

[7] Vasiliadou I. A., Molina R., Martinez F., Melero J. A., Stathopoulou P. M., Tsiamis G. Toxicity assessment of pharmaceutical compounds on mixed culture from activated sludge using respirometric technique: The role of microbial community structure. Science of The Total Environment 2018:630:808–819. doi:10.1016/j.scitotenv.2018.02.09510.1016/j.scitotenv.2018.02.09529494982Open DOISearch in Google Scholar

[8] Rozitis Dz., Strade E. COD reduction ability of microorganisms isolated from highly loaded pharmaceutical wastewater pre-treatment process. Journal of Materials and Environmental Science 2015:6(2):507–512.Search in Google Scholar

[9] Tekin H., et al. Use of Fenton oxidation to improve the biodegradability of a pharmaceutical wastewater. Journal of Hazardous Materials 2006:136(2):258–265. doi:10.1016/j.jhazmat.2005.12.01210.1016/j.jhazmat.2005.12.01216423452Open DOISearch in Google Scholar

[10] Lefebvre O., et al. Biological treatment of pharmaceutical wastewater from the antibiotics industry. Water Science and Technology 2014:69(4):855–861. doi:10.2166/wst.2013.72910.2166/wst.2013.72924569287Search in Google Scholar

[11] Ma K., Qin Z., Zhao Z., Zhao C., Liang S. Toxicity evaluation of wastewater collected at different treatment stages from a pharmaceutical industrial park wastewater treatment plant. Chemosphere 2016:158:163–170. doi:10.1016/j.chemosphere.2016.05.05210.1016/j.chemosphere.2016.05.05227262686Open DOISearch in Google Scholar

[12] Shi X., Yeap T. S., Huang S., Chen J., Ng H. Y. Pretreatment of saline antibiotic wastewater using marine microalga. Bioresource Technology 2018:258:240–246. doi:10.1016/j.biortech.2018.02.11010.1016/j.biortech.2018.02.110Open DOISearch in Google Scholar

[13] Ren S. Assessing wastewater toxicity to activated sludge: recent research and developments. Environment International 2004:30(8):1151–1164. doi:10.1016/j.envint.2004.06.00310.1016/j.envint.2004.06.003Search in Google Scholar

[14] Sirtori C., et al. Decontamination industrial pharmaceutical wastewater by combining solar photo-Fenton and biological treatment. Water Research 2009:43(3):661–668. doi:10.1016/j.watres.2008.11.01310.1016/j.watres.2008.11.013Open DOISearch in Google Scholar

[15] Cēbere B., Faltiņa E., Zelčāns N., Kalniņa D. Toxicity tests for ensuring successful industrial wastewater treatment plant operation. Environmental and Climate Technologies 2009:3(3):41–47. doi:10.2478/v10145-009-0005-810.2478/v10145-009-0005-8Open DOISearch in Google Scholar

[16] Oller I., Malato S., Sánchez-Pérez J. A. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination – A review. Science of Total Environment 2011:409(20):4141–4166. doi:10.1016/j.scitotenv.2010.08.06110.1016/j.scitotenv.2010.08.061Open DOISearch in Google Scholar

[17] Philp J. C., et al. Whole cell immobilised biosensors for toxicity assessment of a wastewater treatment plant treating phenolics-containing waste. Analytica Chimica Acta 2003:487(1):61–74. doi:10.1016/S0003-2670(03)00358-110.1016/S0003-2670(03)00358-1Open DOISearch in Google Scholar

[18] Xiao Y., De Araujo C., Sze C. C., Stuckey D. C. Toxicity measurement in biological wastewater treatment processes: A review. Journal of Hazardous Materials 2015:286:15–29. doi:10.1016/j.jhazmat.2014.12.03310.1016/j.jhazmat.2014.12.033Open DOISearch in Google Scholar

[19] Hassan S. H. A., Van Ginkel S. W., Hussein M. A. M., Abskharon R., Oh S. E. Toxicity assessment using different bioassays and microbial biosensors. Environment International 2016:92–93:106–118. doi:10.1016/j.envint.2016.03.00310.1016/j.envint.2016.03.003Open DOISearch in Google Scholar

[20] Kungolos A. Evaluation of toxic properties of industrial wastewater using on-line respirometry. Journal of Environmental Science and Health. Part A, Toxic/hazardous Substances & Environmental Engineering 2005:40(4):869–880. doi:10.1081/ESE-20004829210.1081/ESE-200048292Open DOISearch in Google Scholar

[21] Gutiérrez M., Etxebarria J., de las Fuentes L. Evaluation of wastewater toxicity: comparative study between Microtox® and activated sludge oxygen uptake inhibition. Water Research 2002:36(4):919–924. doi:10.1016/S0043-1354(01)00299-810.1016/S0043-1354(01)00299-8Open DOISearch in Google Scholar

[22] Meherdad F., et al. Identification of Bacterial Population of Activated Sludge Process and Their Potentials in Pharmaceutical Effluent Treatment. British Biotechnology Journal 2014:4(3):317–324. doi:10.9734/BBJ/2014/791310.9734/BBJ/2014/7913Open DOISearch in Google Scholar

[23] Surerus V., Giordano G., Teixeira L. A. C. Activated sludge inhibition capacity index. Brazilian Journal of Chemical Engineering 2014:31(2):385–392. doi:10.1590/0104-6632.20140312s0000251610.1590/0104-6632.20140312s00002516Open DOISearch in Google Scholar

[24] Abdalla K. Z., Hammam G. Correlation between Biochemical Oxygen Demand and Chemical Oxygen Demand for Various Wastewater Treatment Plants in Egypt to Obtain the Biodegradability Indices. International Journal of Sciences: Basic and Applied Research 2014:13(1):42–48.Search in Google Scholar

[25] Mangkoedihardjo S. Biodegradability Improvement of Industrial Wastewater Using Hyacinth. Journal of Applied Sciences 2006:6:1409–1414. doi:10.3923/jas.2006.1409.141410.3923/jas.2006.1409.1414Open DOISearch in Google Scholar

[26] Cui W., Cui Z., Zhang N., Ma Q., Liu L., Zhang X. A new efficient technology for refractory phenol-formaldehyde resin wastewater treatment. RSC Advances 2016:6(23):19078–19088. doi:10.1039/C5RA21502A10.1039/521502Open DOISearch in Google Scholar

[27] Agency for Toxic Substances and Disease Registry (ASTDR). Toxicological profile for Formaldehyde. Atlanta: U.S. Department of Health and Human Services, Public Health Service, 1999.Search in Google Scholar

[28] Eiroa M., Vilar A., Amor L., Kennes C., Veiga M. C. Biodegradation and effect of formaldehyde and phenol on the denitrification process. Water Research 2005:39(2–3):449–455. doi:10.1016/j.watres.2004.09.01710.1016/j.watres.2004.09.017Open DOISearch in Google Scholar

[29] Agency for Toxic Substances and Disease Registry (ASTDR). Toxicological profile for Phenol. Atlanta: U.S. Department of Health and Human Services, Public Health Service, 2008.Search in Google Scholar

[30] Yoong E. T., Lant P. A., Greenfield P. F. In situ respirometry in an SBR treating wastewater with high phenol concentrations. Water Research 2000:34(1):239–245. doi:10.1016/S0043-1354(99)00142-610.1016/S0043-1354(99)00142-6Open DOISearch in Google Scholar

[31] Hussain A., Dubey S. K., Kumar V. Kinetic study for aerobic treatment of phenolic wastewater. Water Resources and Industry 2015:11:81–90. doi:10.1016/j.wri.2015.05.00210.1016/j.wri.2015.05.002Open DOISearch in Google Scholar

[32] Pradeep N. V., et al. Biological removal of phenol from wastewaters: a mini review. Applied Water Science 2015:5(2):105–112. doi:10.1007/s13201-014-0176-810.1007/s13201-014-0176-8Open DOISearch in Google Scholar

[33] Heys K. A., Shore R. F., Pereira M. G., Jones K. C., Martin F. L. Risk assessment of environmental mixture effects. RSC Advances 2016:6(53):47844–47857. doi:10.1039/C6RA05406D10.1039/605406Open DOISearch in Google Scholar

[34] Kargi F. Enhanced biological treatment of saline wastewater by using halophilic bacteria. Biotechnology Letters 2002:24(19):1569–1572. doi:10.1023/A:102037942191710.1023/A:1020379421917Open DOISearch in Google Scholar

[35] Lefebvre O., Moletta R. Treatment of organic pollution in industrial saline wastewater: A literature review. Water Research 2006:40(20):3671–3682. doi:10.1016/j.watres.2006.08.02710.1016/j.watres.2006.08.027Open DOISearch in Google Scholar

[36] Shi X., Lefebvre O., Ng K. K., Ng H.Y. Sequential anaerobic-aerobic treatment of pharmaceutical wastewater with high salinity. Bioresource Technology 2014:153:79–86. doi:10.1016/j.biortech.2013.11.04510.1016/j.biortech.2013.11.045Open DOISearch in Google Scholar

[37] Zhang X., Gao J., Zhao F., Zhao Y., Li Z. Characterization of a salt-tolerant bacterium Bacillus sp. from a membrane bioreactor for saline wastewater treatment. Journal of Environmental Sciences 2014:26(6):1369–1374. doi:10.1016/S1001-0742(13)60613-010.1016/S1001-0742(13)60613-0Open DOISearch in Google Scholar

[38] Wang R., et al. Effects of inorganic salts on denitrifying granular sludge: The acute toxicity and working mechanisms. Bioresource Technology 2016:204:65–70. doi:10.1016/j.biortech.2015.12.06210.1016/j.biortech.2015.12.06226773376Open DOISearch in Google Scholar

[39] Ochoa-Herrera V., et al. Toxicity of fluoride to microorganisms in biological wastewater treatment systems. Water Research 2009:43(13):3177–3186. doi:10.1016/j.watres.2009.04.03210.1016/j.watres.2009.04.03219457531Open DOISearch in Google Scholar

[40] Negrea A., et al. Studies Concerning the Aluminium Ions Removal from Waste Water. Chemical Bulletin of "POLITEHNICA" University of Timişoara 2005:50:148–51.Search in Google Scholar

[41] Pour P. G., Takassi M. A., Hamoule T. Removal of Aluminum from Water and Industrial Waste Water. Oriental Journal of Chemistry 2014:30(3):1365–1369. doi:10.13005/ojc/30035610.13005/ojc/300356Search in Google Scholar

[42] Olaniran A. O., Balgobind A., Pillay B. Bioavailability of Heavy Metals in Soil: Impact on Microbial Biodegradation of Organic Compounds and Possible Improvement Strategies. International Journal of Molecular Sciences 2013:14(5):10197–10228. doi:10.3390/ijms14051019710.3390/ijms140510197367683623676353Open DOISearch in Google Scholar

[43] Jaishankar M., Tseten T., Anbalagan N., Mathew B. B., Beeregowda K. N. Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology 2014:7(2):60–72. doi:10.2478/intox-2014-000910.2478/intox-2014-0009442771726109881Open DOISearch in Google Scholar

[44] Rosseland B. O., Eldhuset T. D., Staurnes M. Environmental effects of aluminium. Environmental Geochemistry and Health 1990:12(1–2):17–27. doi:10.1007/BF0173404510.1007/BF0173404524202562Open DOISearch in Google Scholar

[45] Sparling D. W. Ecotoxicology Essentials: Environmental Contaminants and Their Biological Effects on Animals and Plants. London: Academic Press, 2016.Search in Google Scholar

[46] Comber S. D. W., Gardner M. J., Churchley J. Aluminium speciation: implications of wastewater effluent dosing on river water quality. Chemical Speciation & Bioavailability 2005:17(3):117–128. doi:10.3184/09542290578277487410.3184/095422905782774874Open DOISearch in Google Scholar

[47] Klimek B., et al. The toxicity of aluminium salts to Lecane inermis rotifers: are chemical and biological methods used to overcome activated sludge bulking mutually exclusive? Archives of Environmental Protection 2013:39(3):127–138. doi:10.2478/aep-2013-002410.2478/aep-2013-0024Open DOISearch in Google Scholar

eISSN:
2255-8837
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, andere