Zitieren

[1] Krešák, J., Peterka, P., Kropuch, S., Novák, L. (2014): Measurement of tight in steel ropes by a mean of thermovision, Measurement, 50, pp. 93-98.Search in Google Scholar

[2] Kosec, B., Karpe, B., Budak, I., Ličen, M., Đorđević, M., Nagode, A., Kosec, G. (2012): Efficiency and quality of inductive heating and quenching of planetary shafts, Metallurgy, 51, pp. 71-74.Search in Google Scholar

[3] Glavaš, H., Jozsa, L., Barić, T. (2016): Infrared thermography in energy audit of electrical installations, Tehnički vjesnik, 23, pp. 1533-1539.Search in Google Scholar

[4] HangJin, J., Jonathan, K., Kyle, B., Kumar, S. (2017): Spectral emissivity of oxidized and roughened metal surfaces. International Journal of Heat and Mass Transfer, 115, Part B, pp. 1065-1071.Search in Google Scholar

[5] Švantner, M., Honnerová, P., Veselý, Z. (2016): The influence of furnace wall emissivity on steel charge heating. Infrared Physics & Technology, 74, pp. 63-71.10.1016/j.infrared.2015.12.001Search in Google Scholar

[6] Deheng, S., Qionglan, L., Zunlue, Z., Jinfeng, S., Baokui, W. (2014): Experimental study of the relationships between the spectral emissivity of brass and the temperature in the oxidizing environment. Infrared Physics & Technology, 64, pp. 119-124.Search in Google Scholar

[7] Zhibin, H., Wancheng, Z., Xiufeng, T., Dongmei, Z., Fa, L. (2011): Effects of substrate roughness on infrared- emissivity characteristics of Au films deposited on Ni alloy. Thin Solid Films, 519, pp. 3100-3106.Search in Google Scholar

[8] Wen, C.D., Mudawar, I. (2004): Emissivity characteristics of roughened aluminum alloy surfaces and assessment of multispectral radiation thermometry (MRT) emissivity models. International Journal of Heat and Mass Transfer, 47, pp. 3591-3605.10.1016/j.ijheatmasstransfer.2004.04.025Search in Google Scholar

[9] Kosec, B., Kosec, G. (2003): Temperature field analysis on active working surface of the die-casting die. Metall, 57, pp. 134-136.Search in Google Scholar

[10] Wen, C.D., Mudawar, I. (2006): Modeling the effects of surface roughness on the emissivity of aluminum alloys. International Journal of Heat and Mass Transfer, 49, pp. 4279-4289.10.1016/j.ijheatmasstransfer.2006.04.037Search in Google Scholar

[11] Yang, C., Ding, Z., Tao, Q.C., Liang, L., Ding, Y.F., Zhang, W.W., Zhu, Q.L. (2018): High-strength and free-cutting silicon brass alloy C27200es designed via the zinc equivalent rule. Materials Science and Engineering, 723, pp. 296-305.10.1016/j.msea.2018.03.055Search in Google Scholar

[12] Švantner, M., Vacíková, P., Honner, M. (2013): Non-contact charge temperature measurement on industrial continuous furnaces and steel charge emissivity analysis. Infrared Physics & Technology, 61, pp. 20-26. doi: 10.1016/j.infrared.2013.07.005.Search in Google Scholar

[13] Lanc, Z., Štrbac, B., Zeljković, M., Živković, A., Hadžistević, M. (2018): Emissivity of Aluminium Alloy using Infrared Thermographic Technique. Materials and Technology, 52, pp. 35-40.Search in Google Scholar

[14] Motorcu, A.R., Isik, Y., Kus, A., Cakir, M.C. (2016): Analysis of the cutting temperature and surface roughness during the orthogonal machining of AISI 4140 alloy steel via the Taguchi method, Materials and technology, 50(3), 343-351. doi:10.17222/mit.2015.021.Search in Google Scholar

eISSN:
1854-7400
Sprache:
Englisch