Uneingeschränkter Zugang

Comparative study between Acuros XB algorithm and Anisotropic Analytical Algorithm in the case of heterogeneity for the treatment of lung cancer


Zitieren

[1] Clarkson JR. A note on depth doses in fields of irregular shape. Br J Radiol. 1941;14(164):265-268.10.1259/0007-1285-14-164-265Search in Google Scholar

[2] Cunningham JR. Scatter-air ratios. Phys Med Biol.1972;17(1):42-51.10.1088/0031-9155/17/1/0055071500Search in Google Scholar

[3] Khan FM, Levitt SH, Moore VC, Jones TK Jr. Computer and approximation methods of calculating depth dose in irregularly shaped fields. Radiology. 1973;106(2):433-436.10.1148/106.2.4334684488Search in Google Scholar

[4] Sontag MR, Cunningham JR. The equivalent tissue-air ratio method for making absorbed dose calculations in a heterogeneous medium. Radiology. 1978;129(3):787-794.10.1148/129.3.787725060Search in Google Scholar

[5] Webb S, Fox RA. Verification by Monte Carlo methods of a power law tissue-air ratio algorithm for inhomogeneity corrections in photon beam dose calculations. Phys Med Biol. 1980;25(2):225-240.10.1088/0031-9155/25/2/0037384209Search in Google Scholar

[6] Papanikolaou N, Battista J, Boyer A, et al. Tissue Inhomogeneity Corrections for Megavoltage Photon Beams. AAPM Report No. 85, AAPM TG65, 2004.10.37206/86Search in Google Scholar

[7] Mohan R, Chui C, Lidofsky L. Differential pencil beam dose computation model for photons. Med Phys. 1986;13(1):64-73.10.1118/1.5959243951411Search in Google Scholar

[8] Ahnesjö A. Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media. Med Phys. 1989;16(4):577-592.10.1118/1.5963602770632Search in Google Scholar

[9] Ahnesjö A, Saxner M, Trepp A. A pencil beam model for photon dose calculation. Med Phys. 1992;19(2):263-273.10.1118/1.5968561584117Search in Google Scholar

[10] Bourland JD, Chaney EL. A finite-size pencil beam model for photon dose calculations in three dimensions. Med Phys. 1992;19(6):1401-1412.10.1118/1.5967721461202Search in Google Scholar

[11] Ahnesjö A, Aspradakis MM. Dose calculations for external photon beams in radiotherapy. Phys Med Biol. 1999;44(11):R99-155.10.1088/0031-9155/44/11/201Search in Google Scholar

[12] Knöös T, Wieslander E, Cozzi L, et al. Comparison of dose calculation algorithms for treatment planning in external photon beam therapy for clinical situations. Phys Med Biol. 2006;51(22):5785-5807.10.1088/0031-9155/51/22/005Search in Google Scholar

[13] Nakaguchi Y, Araki F, Maruyama M, Fukuda S. Comparison of RTPS and Monte Carlo dose distributions in heterogeneous phantoms for photon beams. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2010;66(4):322-333.10.6009/jjrt.66.322Search in Google Scholar

[14] Han T, Mikell JK, Salehpour M, Mourtada F. Dosimetric comparison of Acuros XB deterministic radiation transport method with Monte Carlo and model-based convolution methods in heterogeneous media. Med Phys. 2011;38(5):2651-2664.10.1118/1.3582690Search in Google Scholar

[15] Gagné IM, Zavgorodni S. Evaluation of the analytical anisotropic algorithm in an extreme water-lung interface phantom using Monte Carlo dose calculations. J Appl Clin Med Phys. 2007;8(1):33-46.10.1120/jacmp.v8i1.2324Search in Google Scholar

[16] Sievinen J, Ulmer W, Kaissl W. AAA photon dose calculation model in Eclipse. RAD #7170B. Varian Medical Systems. 2005.Search in Google Scholar

[17] Ulmer W, Kaissl W. The inverse problem of a Gaussian convolution and its application to the finite size of the measurement chambers/detectors in photon and proton dosimetry. Phys Med Biol. 2003;48(6):707-727.10.1088/0031-9155/48/6/302Search in Google Scholar

[18] Ulmer W, Harder D. Applications of a Triple Gaussian Pencil Beam Model for Photon Beam Treatment Planning. Zeitschrift für Medizinische Physik. 1996;6(2):68-74.10.1016/S0939-3889(15)70784-1Search in Google Scholar

[19] Ulmer W, Harder D. A Triple Gaussian Pencil Beam Model for Photon Beam Treatment Planning. Zeitschrift für Medizinische Physik. 1995;5(1):25-30.10.1016/S0939-3889(15)70758-0Search in Google Scholar

[20] Vassiliev ON, Wareing TA, McGhee J, et al. Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams. Phys Med Biol. 2010;55(3):581-598.10.1088/0031-9155/55/3/00220057008Search in Google Scholar

[21] IAEA-TECDOC-1540: Specification and Acceptance Testing of Radiotherapy Treatment Planning Systems. IAEA. 2007.Search in Google Scholar

[22] Siebers JV, Keall PJ, Nahum AE, Mohan R. Converting absorbed dose to medium to absorbed dose to water for Monte Carlo based photon beam dose calculations. Phys Med Biol. 2000;45(4):983-995.10.1088/0031-9155/45/4/31310795986Search in Google Scholar

[23] Bush K, Gagne IM, Zavgorodni S, et al. Dosimetric validation of Acuros XB with Monte Carlo methods for photon dose calculations. Med Phys. 2011;38(4):2208-2221.10.1118/1.356714621626955Search in Google Scholar

[24] Kan MW, Leung LH, So RW, Yu PK. Experimental verification of the Acuros XB and AAA dose calculation adjacent to heterogeneous media for IMRT and RapidArc of nasopharygeal carcinoma. Med Phys. 2013;40(3):031714.10.1118/1.479230823464309Search in Google Scholar

[25] Han T, Mourtada F, Kisling K, et al. Experimental Validation of Deterministic Acuros XB Algorithm for IMRT and VMAT Dose Calculations with the Radiological Physics Center’s Head and Neck Phantom. Med Phys. 2012;39(4):2193-2202.10.1118/1.3692180333766322482641Search in Google Scholar

[26] Fogliata A, Nicolini G, Clivio A, et al. Dosimetric evaluation of Acuros XB Advanced Dose Calculation algorithm in heterogeneous media. Radiat Oncol. 2011;6:82.10.1186/1748-717X-6-82316841121771317Search in Google Scholar

[27] Fogliata A, Nicolini G, Clivio A, et al. Critical appraisal of Acuros XB and Anisotropic Analytic Algorithm dose calculation in advanced non-small-cell lung cancer treatments. Int J Radiat Oncol Biol Phys. 2012;83(5):1587-1595.10.1016/j.ijrobp.2011.10.07822300575Search in Google Scholar

[28] Kan MW, Leung LH, Yu PK. Dosimetric impact of using the Acuros XB algorithm for intensity modulated radiation therapy and RapidArc planning in nasopharyngeal carcinomas. Int J Radiat Oncol Biol Phys. 2013;85(1):e73-e80.10.1016/j.ijrobp.2012.08.03123040220Search in Google Scholar

[29] Fogliata A, Scorsetti M, Navarria P, et al. Dosimetric comparison between VMAT with different dose calculation algorithms and protons for soft-tissue sarcoma radiotherapy. Acta Oncol. 2013;52(3):545-552.10.3109/0284186X.2012.68985322671576Search in Google Scholar

[30] Rana S, Rogers K. Dosimetric evaluation of Acuros XB dose calculation algorithm with measurements in predicting doses beyond different air gap thickness for smaller and larger field sizes. J Med Phys. 2013;38(1):9-14.10.4103/0971-6203.106600360734723532180Search in Google Scholar

[31] Robinson D. Inhomogeneity correction and the analytic anisotropic algorithm. J Appl Clin Med Phys. 2008;9(2):2786.10.1120/jacmp.v9i2.2786572171018714283Search in Google Scholar

[32] Sterpin E, Tomsej M, De Smedt B, et al. Monte Carlo evaluation of the AAA treatment planning algorithm in a heterogeneous multilayer phantom and IMRT clinical treatments for an Elekta linear accelerator. Med Phys. 2007;34(5):1665-167710.1118/1.272731417555248Search in Google Scholar

eISSN:
1898-0309
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Medizin, Biomedizinische Technik, Physik, Technische und angewandte Physik, Medizinische Physik