Uneingeschränkter Zugang

Comparative evaluation of sodium tripolyphosphate production technologies with the use of a complex quality method


Zitieren

1. Dymon, J.J. & King, A.J. (1951). Structure studies of the two forms of sodium tripolyphosphate. Acta Crystallogr. 4, 378–379. DOI: 10.1107/S0365110X51001197.Open DOISearch in Google Scholar

2. Van Wazer, J.R. (1958). Phosphorus and Its Compounds (Vol. 1). New York: Interscience Publishers.Search in Google Scholar

3. Różyńska, M. & Linkiewicz, K. (1999). Modern detergents. Przem. Chem. 78(5), 168–171.Search in Google Scholar

4. Rashchi, F. & Finch, J.A. (2000). Polyphosphates: a review their chemistry and application with particular reference to mineral processing. Miner. Eng. 13(10–11), 1019–1035. DOI: 10.1016/S0892-6875(00)00087-X.Open DOISearch in Google Scholar

5. Köhler, J. (2001, March). Detergent phosphates and detergent ecotaxes: a policy assessment. Retrieved April 25, 2018, from https://pdfs.semanticscholar.org/5877/00152e439150b64593f8be0255dbd284c706.pdf.Search in Google Scholar

6. Makara, A. & Kowalski, Z. (2017). Cleaner technologies of sodium tripolyphosphate production. Edited by MEERI Polish Academy of Sciences. Studies, Dissertations, Monographs, 204, Cracow.Search in Google Scholar

7. Goberis, S., Pundene, I. & Antonovich, V. (2005). The effect of sodium tripolyphosphate on the properties of medium – cement refractory castables based on Gorkal-40 cement. Refract. Ind. Ceram. 46(6), 403–408. DOI: 10.1007/s11148-006-0035-8.Open DOISearch in Google Scholar

8. Ltifi, M., Guefrech, A. & Mounanga, P. (2012). Effects of sodium tripolyphosphate on the rheology and hydration rate of Portland cement pastes. Adv. Cem. Res. 24(6), 325–335. DOI: 10.1680/adcr.11.00028.Open DOISearch in Google Scholar

9. Tan, H., Huang, J., Ma, B. & Li, X. (2014). Effect of superplasticiser and sodium tripolyphosphate on fluidity of cement paste. Mag. Concr. Res. 66(23), 1194–1200. DOI: 10.1680/macr.14.00091.Open DOISearch in Google Scholar

10. Aksu, M.İ. & Alp, E. (2012). Effects of sodium tripolyphosphate and modified atmosphere packaging on the quality characteristics and storage stability of ground beef. Food Technol. Biotechnol. 50(1), 81–87.Search in Google Scholar

11. Gonçalves, A.A. & Ribeiro, J.L.D. (2008). Do phosphates improve the seafood quality? Reality and legislation. Panam J. Aquat Sci. 3(3), 237–247.Search in Google Scholar

12. Global Sodium Tripolyphosphate (STPP) Market. (2017). Trends Analysis & Forecasts to 2022. Retrieved March 22, 2017, from https://www.infiniumglobalresearch.com/chemical_material/global_sodium_tripolyphosphate_stpp_market.Search in Google Scholar

13. Makara, A. & Kowalski, Z. (2013). Study on production of sodium tripolyphosphate by one-stage dry method using wet-process phosphoric acid. Przem. Chem. 92(6), 1121–1124.Search in Google Scholar

14. Kowalski, Z. & Makara, A. (2014). The synthesis of tripolyphosphate using a one-stage method and a laboratory rotary kiln. Pol. J. Chem. Technol. 16(1), 36–40. DOI: 10.2478/pjct-2014-0006.Open DOISearch in Google Scholar

15. Makara, A., Generowicz, A. & Kowalski, Z. (2019). Assessment and comparison of technological variants of the sodium tripolyphosphate production with the use of multicriteria analysis. Int. J. Environ. Sci. Technol. 16(4), 2069–2082. DOI: 10.1007/s13762-018-1842-4.Open DOISearch in Google Scholar

16. Kowalski, Z., Generowicz, A., Makara, A. & Kulczycka, J. (2015). Evaluation of municipal waste landfilling using the technology quality assessment method. Environ. Prot. Eng. 41(4), 167–179. DOI: 10.5277/epe150413.Open DOISearch in Google Scholar

17. Generowicz, A., Kulczycka, J., Kowalski, Z. & Banach, M. (2011). Assessment of waste management technology using BATNEEC options, technology quality method and multicriteria analysis. J. Environ. Manage. 92(4), 1314–1320. DOI: 10.1016/j.jenvman.2010.12.016.21232845Open DOISearch in Google Scholar

18. Goedkoop, M.A.J., Heijungs, R., Huijbregts, M., De Schryver, A., Struijs, J. & Van Zelm, R. (2009). ReCiPe 2008: A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. First edition, Report I: Characterisation.Search in Google Scholar

19. International Organization for Standardization. (2006). Environmental Management — Life Cycle Assessment — Principles and framework. ISO 14040:2006. Geneva.Search in Google Scholar

20. International Organization for Standardization. (2006). Environmental management — Life Cycle Assessment — Requirements and guidelines. ISO 14044:2006. Geneva.Search in Google Scholar

21. Guinée, J.B. (2002). Handbook on Life Cycle Assessment. Operational Guide to the ISO Standards. Dordrecht/Boston/London: Kluwer Academic Publishers.10.1007/BF02978897Search in Google Scholar

22. Notarnicola, B., Salomone, R., Petti, L., Renzulli, P.A., Roma, R. & Cerutti, A.K. (2015). Life cycle assessment in the agri-food sector: Case studies, methodological issues and best practices. Switzerland: Springer International Publishing.10.1007/978-3-319-11940-3Search in Google Scholar

23. SimaPro 8.0.4.3 User Manual. 2016.Search in Google Scholar

24. European Commission, Joint Research Centre (2010). Analysis of existing environmental impact assessment methodologies for use in life cycle assessment. ILCD Handbook. First edition, International Reference Life Cycle Data System, European Union. Retrieved April 28, 2018 from http://eplca.jrc.ec.europa.eu/uploads/ILCD-Handbook-LCIA-Background-analysis-online-12March2010.pdf.Search in Google Scholar

25. European Commission, Joint Research Centre. (2012). Characterisation factors of the ILCD Recommended Life Cycle Impact Assessment methods. Database and Supporting Information. First edition, EUR 25167. Publications Office of the European Union, Luxembourg. Retrieved April 28, 2018, from http://eplca.jrc.ec.europa.eu/uploads/LCIA-characterization-factors-of-the-ILCD.pdf.Search in Google Scholar

26. Edwards, J.W. & Herzog, A.H. (1957). The mechanism of formation of sodium triphosphate from orthophosphate mixtures. J. Ame. Chem. Soc. 79(14), 3647–3650. DOI: 10.1021/ja01571a009.Open DOISearch in Google Scholar

27. Banach, M. & Makara, A. (2011). Thermal Decomposition of Sodium Phosphates. J. Chem. Eng. Data 56(7), 3095–3099. DOI: 10.1021/je200381z.Open DOISearch in Google Scholar

28. Makara, A., Smol, M., Kulczycka J. & Kowalski Z. (2016). Technological, environmental and economic assessment of sodium tripolyphosphate production – a case study. J. Clean. Prod. 133, 243–251. DOI: 10.1016/j.jclepro.2016.05.096.Open DOISearch in Google Scholar

29. Makara, A., Wzorek, Z., Kowalski, Z. & Banach M. (2009). Effect of calcination time and temperature on the formation of sodium tripolyphosphate. Przem. Chem. 88(5), 499–504.Search in Google Scholar

30. Makara, A., Kowalski, Z. & Banach M. (2011). Effect of chemical composition of phosphoric acid on the formation of sodium tripolyphosphate. Przem. Chem. 90(5), 900–903.Search in Google Scholar

31. Makara, A., Kowalski, Z. & Banach M. (2012). Control of phase composition of sodium tripolyphosphate at varying parameters of calcination and product recycling. Przem. Chem. 91(5), 860–864.Search in Google Scholar

32. Kowalski, Z. & Kulczycka, J. (2004). Cleaner production as a basic element for the sustainable development strategy. Pol. J. Chem. Technol. 6(4), 35–40.Search in Google Scholar

33. Kowalski, Z. & Makara, A. (2017). Comparison of technologies for the sodium tripolyphosphate production by conventional spray and new one-stage dry methods. Przem. Chem. 96(1), 187–192.10.15199/62.2017.1.21Search in Google Scholar

eISSN:
1899-4741
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Biotechnologie, Chemieingenieurwesen, Verfahrenstechnik