Uneingeschränkter Zugang

Free radical scavenging ability of sodium lignosulfonate and its application in food grade polypropylene


Zitieren

1. Boone, J., Lox, F. & Pottie, S. (1993). Deficiencies of polypropylene in its use as a food-packaging material – a review. Packaging Technol. Sci. 6(5), 277–281. DOI: 10.1002/pts.2770060508.10.1002/pts.2770060508Search in Google Scholar

2. Bati, B., Celik, I. & Dogan, A. (2014). Determination of hepatoprotective and antioxidant role of walnuts against ethanol-induced oxidative stress in rats. Cell Biochem. Biophys. 71(2), 1191–1198. DOI: 10.1007/s12013-014-0328-3.10.1007/s12013-014-0328-325391888Search in Google Scholar

3. Lee, M.C.I., Velayutham, M., Komatsu, T., Hille, R. & Zweier, J.L. (2014). Measurement and characterization of superoxide generation from xanthine dehydrogenase: a redox--regulated pathway of radical generation in ischemic tissues. Biochem. 53(41), 6615–6623. DOI: 10.1021/bi500582r.10.1021/bi500582r420489225243829Search in Google Scholar

4. Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T., Mazur, M. & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39(1), 0–84. DOI: 10.1016/j.biocel.2006.07.001.10.1016/j.biocel.2006.07.00116978905Search in Google Scholar

5. Finkel, T. & Holbrook, N.J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature 408(6809), 239–247. DOI: 10.1038/35041687.10.1038/3504168711089981Search in Google Scholar

6. Kamal-Eldin, A. & Appelqvist, LA. (1996). The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31(7), 671–701. DOI: 10.1007/bf02522884.10.1007/BF025228848827691Search in Google Scholar

7. Shogren, R.L. & Biswas, A. (2013). Preparation of starch– sodium lignosulfonate graft copolymers via laccase catalysis and characterization of antioxidant activity. Carbohydr. Polym. 91(2), 581–585. DOI: 10.1016/j.carbpol.2012.08.079.10.1016/j.carbpol.2012.08.07923121948Search in Google Scholar

8. Trinh, L.T.P., Lee, Y.J., Lee, J.W., Bae, H.J. & Lee, H.J. (2013). Recovery of an ionic liquid [BMIM]Cl from a hydro-lysate of lignocellulosic biomass using electrodialysis. Separ. Purific. Technol. 120, 86–91. DOI: 10.1016/j.seppur.2013.09.025.10.1016/j.seppur.2013.09.025Search in Google Scholar

9. Wang, X., Zhou, J.H., Li, H.M. & Sun, G.W. (2013). Depolymerization of lignin with supercritical fluids: a review. Adv. Mater. Res. 821–822, 1126–1134. DOI: 10.4028/www.scientific.net/AMR.821-822.1126.10.4028/www.scientific.net/AMR.821-822.1126Search in Google Scholar

10. Xue, Y., Luan, Q., Yang, D., Yao, X. & Zhou, K. (2011). Direct evidence for hydroxyl radical scavenging activity of cerium oxide nanoparticles. J. Phys. Chem. C. 115(11), 4433–4438. DOI: 10.1021/jp109819u.10.1021/jp109819uSearch in Google Scholar

11. Chioua, M., Sucunza, D., Soriano, E., Hadjipavlou-Litina, D., Alcázar, A., Ayuso, I., Oset-Gasque, M.J., González, M.P., Monjas, L., Rodríguez-Franco, M.I., Marco-Contelles, J. & Samadi, A. (2012) α-Aryl-N-alkyl Nitrones, as potential agents for stroke treatment: Synthesis, theoretical calculations, antioxidant, anti-inflammatory, neuroprotective, and brain-blood barrier permeability properties. J. Med. Chem. 55(1), 153–168. DOI: 10.1021/jm201105a.10.1021/jm201105aSearch in Google Scholar

12. Okawa, M., Kinjo, J., Nohara, T. & Ono, M. (2001). DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity of flavonoids obtained from some medicinal plants. Biol. Pharmac. Bull. 24(10), 1202–1205. DOI: 10.1016/S0925-9635(97)00165-9.10.1016/S0925-9635(97)00165-9Search in Google Scholar

13. Nenadis, N. & Tsimidou, M. (2002). Observations on the estimation of scavenging activity of phenolic compounds using rapid 1,1-diphenyl-2-picrylhydrazyl (DPPH•) tests. J. Amer. Oil Chemists’ Soc. 79(12), 1191–1195. DOI: 10.1007/s11746-002-0626-z.10.1007/s11746-002-0626-zSearch in Google Scholar

14. Aoshima, H., Tsunoue, H., Koda, H. & Kiso, Y. (2004). Aging of whiskey increases 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. J. Agric. Food Chem. 52(16), 5240–5244. DOI: 10.1021/jf049817s.10.1021/jf049817sSearch in Google Scholar

15. Sendra, J.M., Sentandreu, E. & Navarro, J. L. (2006). Reduction kinetics of the free stable radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) for determination of the antiradical activity of citrus juices. Europ. Food Res. Technol. 223(5), 615–624. DOI: 10.1007/s00217-005-0243-3.10.1007/s00217-005-0243-3Search in Google Scholar

16. Yue-Jun, H.E., Yong-De, Y. & Feng, T. (2009). Detection of antioxidative capacity of essential oils from the bamboo leaves by scavenging organic free radical DPPH. J. Anhui Agric. Univ. 36(3), 408–412. DOI: 10.1016/j.elecom.2008.10.019.10.1016/j.elecom.2008.10.019Search in Google Scholar

17. Su-Hua, G., Md, Y.F. & Peng, L. S. (2010). A comparison of the antioxidant properties and total phenolic content in a diatom, chaetoceros sp. and a green microalga, nannochloropsis sp. J. Agric. Sci. 2(3). DOI: 10.5539/jas.v2n3p123.10.5539/jas.v2n3p123Search in Google Scholar

18. Apak, R., Gorinstein, S., Bohm, V., Schaich, K.M., Ozyurek, M. & Guclu, K. (2013). Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC Technical Report). Chem. Internat. – IUPAC. 35(3). DOI: 10.1515/ci.2013.35.3.22a.10.1515/ci.2013.35.3.22aSearch in Google Scholar

19. Ding & Hsiou-Yu. (2011). Extracts and constituents of rubus chingii with 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity. Internat. J. Molec. Sci. 12(12), 3941–3949. DOI: 10.3390/ijms12063941.10.3390/ijms12063941Search in Google Scholar

20. Bell, J.C.L. (1982). Determination of floc sizes in kaolin suspensions dispersed by sodium lignosulphonate. Colloids & Surfaces 5(4), 285–299. DOI: 10.1016/0166-6622(82)80041-3.10.1016/0166-6622(82)80041-3Search in Google Scholar

21. Chung, S.Y., Han, S.H., Lee, S.W. & Rhee, C. (2012). Effect of maillard reaction products prepared from glucose– glycine model systems on starch digestibility. Starch – Strke 64(8), 0–0. DOI: 10.1002/star.201100176.10.1002/star.201100176Search in Google Scholar

22. Gülçin. I. (2006). Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology 217(2–3), 213–220. DOI: 10.1016/j.tox.2005.09.011.10.1016/j.tox.2005.09.01116243424Search in Google Scholar

23. Walling, C. & Buckler, S.A. (1955). The reaction of oxygen with organometallic compounds. a new synthesis of hydroperoxides. J. Amer. Chem. Soc. 77(22), 59–63. DOI: 10.1021/ja01627a069.10.1021/ja01627a069Search in Google Scholar

24. Gentile, G., Ambrogi, V., Cerruti, P., Di Maio, R., Nasi, G. & Carfagna, C. (2014). Pros and cons of melt annealing on the properties of?mwcnt/polypropylene composites. Polym. Degrad. & Stability. 110, 56–64. DOI: 10.1016/j.polymdegrad-stab.2014.08.018.Search in Google Scholar

25. Thornberry, T., Carroll, M.A., Keeler, G.J., Sillman, S., Bertman, S.B. & Pippin, M.R. (2001). Observations of reactive oxidized nitrogen and speciation of no y, during the prophet summer 1998 intensive. J. Geophys. Res. Atmosph. 106(D20), 24359–24386. DOI: 10.1029/2000JD900760.10.1029/2000JD900760Search in Google Scholar

26. Wang, Z., Qin, W.Z., Bao, S., Chen, X., Zhang, F.L., & Li, D.S. (2013). The influences of aerobic and anaerobic conditions on PHB and glycerin yields in the process of lignin degradation by pseudomonas stutzeri p156. Adv. Mater. Res. 634–638, 1170–1174. DOI: 10.4028/www.scientific.net/AMR.634-638.1170.10.4028/www.scientific.net/AMR.634-638.1170Search in Google Scholar

27. Dizhbite, T., Telysheva, G., Jurkjane, V. & Viesturs, U. (2004). Characterization of the radical scavenging activity of lignins––natural antioxidants. Biores. Technol. 95(3), 309–317. DOI: 10.1016/j.biortech.2004.02.024.10.1016/j.biortech.2004.02.02415288274Search in Google Scholar

28. Fraga, C.G., Galleano, M., Verstraeten, S.V. & Oteiza, P.I. (2010). Basic biochemical mechanisms behind the health benefits of polyphenols. Molec. Aspects Med. 31(6), 0–445. DOI: 10.1016/j.mam.2010.09.006.10.1016/j.mam.2010.09.00620854840Search in Google Scholar

29. Liu, Y., Hu, T., Wu, Z., Zeng, G., Huang, D. & Shen, Y. (2014). Study on biodegradation process of lignin by FTIR and DSC. Environ. Sci. & Pollut. Res. 21(24), 14004–14013. DOI: 10.1007/s11356-014-3342-5.10.1007/s11356-014-3342-525037100Search in Google Scholar

30. Lambert, J.B., Gronert, S., Shurvell, HF., Lightner, D., Cooks, R.G. & Pearson. (2006). Organic structural spectroscopy: pearson new international edition. J. Labelled Compounds. 44(S1), S826–S828. DOI: 10.2514/6.2006-6905.10.2514/6.2006-6905Search in Google Scholar

31. Xu, H., Yu, G., Mu, X., Zhang, C., Deroussel, P. & Liu, C. (2015). Effect and characterization of sodium lignosulfonate on alkali pretreatment for enhancing enzymatic saccharification of corn stover. Ind. Crops & Products. 76, 638–646. DOI: 10.1016/j.indcrop.2015.07.057.10.1016/j.indcrop.2015.07.057Search in Google Scholar

32. Sadeghifar, H. & Argyropoulos, D.S. (2015). Correlations of the antioxidant properties of softwood kraft lignin fractions with the thermal stability of its blends with polyethylene. ACS Sustainable Chem. & Engin. 3(2), 349–356. DOI: 10.1021/sc500756n.10.1021/sc500756nSearch in Google Scholar

33. Zhao, M.J., Jung, L., Tanielian, C. & Mechin, R. (1994). Kinetics of the competitive degradation of deoxyri-bose and other biomolecules by hydroxyl radicals produced by the fenton reaction. Free Rad. Res. 20(6), 345–363. DOI: 10.3109/10715769409145635.10.3109/107157694091456358081451Search in Google Scholar

34. Silva, D. & Gabriel. (2012). Reaction of methacrolein with the hydroxyl radical in air: incorporation of secondary O\r, 2\r, addition into the MACR + OH master equation. J. Phys. Chem. A. 116(22), 5317–5324. DOI: 10.1021/jp303806w.10.1021/jp303806w22591164Search in Google Scholar

35. Kang, S., Chang, J. & Fan, J. (2015). Phenolic antioxidant production by hydrothermal liquefaction of lignin. Energy Sourc., Part A: Recov., Utilizat., Environ. Effects. 37(5), 494–500. DOI: 10.1080/15567036.2011.585386.10.1080/15567036.2011.585386Search in Google Scholar

36. Li, Z. & Ge, Y. (2012). Antioxidant activities of lignin extracted from sugarcane bagasse via different chemical procedures. Inter. J. Biol. Macromol. 51(5). DOI: 10.1016/j. ijbiomac.2012.09.004.Search in Google Scholar

37. Yoshinori, K. & Seiichiro, F. (2011). Radical-scavenging activity of dietary phytophenols in combination with co-antioxidants using the induction period method. Molecules 16(12), 10457–10470. DOI: 10.3390/molecules161210457.10.3390/molecules161210457626475022173338Search in Google Scholar

38. Alvarez-Suarez, J., Tulipani, S., Romandini, S., Vidal, A. & Battino, M. (2009). Methodological aspects about determination of phenolic compounds and in vitro evaluation of antioxidant capacity in the honey: a review. Current Anal. Chem. 5(4), 293–302. DOI: 10.2174/157341109789077768.10.2174/157341109789077768Search in Google Scholar

eISSN:
1899-4741
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Biotechnologie, Chemieingenieurwesen, Verfahrenstechnik