Uneingeschränkter Zugang

Remarks to history of radon activity concentration metrology


Zitieren

1. Röttger, A., Honig, A., & Linzmaier, D. (2014). Calibration of commercial radon and thoron monitors at stable activity concentrations. Appl. Radiat. Isot., 87, 44–47.10.1016/j.apradiso.2013.11.111Search in Google Scholar

2. Poncela, L. S. Q., Fernández, C. S., Gutiérrez-Villanueva, J. -L. G., Fuente Merino, I., Celaya González, S., Quindós López, L., Quindós López, J., Fernández Lopez, E., & Fernández Villar, A. (2016). The Laboratory of Natural Radiation (LRN) – a place to test radon instruments under variable conditions of radon concentration and climatic variables. Nukleonika, 61(3), 275–280. DOI: 10.1515/nuka-2016-0046.10.1515/nuka-2016-0046Search in Google Scholar

3. Hoover, H. C. & Hoover, L. H. (translators). (1950). Gregorius Agricola De re metallica: translated from the 1st Latin edition of 1556, with biographic introduction, annotation and appendices upon the development of mining methods, metallurgical processes, geology, mineralogy and mining law, from the earliest times to the 16th century. New York: Dover Publications.Search in Google Scholar

4. Rutherford, E., & Brooks, H. T. (1901). The new gas from radium. Trans. Roy. Soc. Canada, 7, 21–25.Search in Google Scholar

5. Cothern, C. R. (1987). History and uses. In C. R. Cothern & J. E. Smith Jr. (Eds.), Environmental radon (pp. 31–58). Switzerland: Springer.Search in Google Scholar

6. ICRU. (2012). Measurement and reporting of radon exposures. (ICRU Report No. 88). Journal of the ICRU, 12(2), 71. doi: 10.1093/jicru/ndv019.10.1093/jicru/ndv019Search in Google Scholar

7. Solomon, S. B., Knutson, E. O., Holub, R. F., Strong, J. C., & Keng, W. T. (1986). International intercalibration and intercomparison of radon, thoron and daughters measuring equipment. Nuclear Energy Agency OECD (NEA). (INIS-XN-172).Search in Google Scholar

8. Peggie, J. R., Gan, T. -H., & Solomon, S. B. (1993). Asian/Australasian Region Intercalibration and Intercomparison Programme for Radon, Thoron and Daughters.Search in Google Scholar

9. Röttger, A., Honig, A., Schmidt, V., Buchröder, H., Rox, A., Butterweck, G., Schuler, Ch., Maringer, F. J., Jachs, P., Edelmaier, R., Michielsen, N., Howarth, C. B., Miles, J. C. H., Vargas, A., Ortega, X., Burian, I., Turtiainen, T., & Hagberg, N. (2006). Radon activity concentration – a Euromet and BIPM supplementary comparison. Appl. Radiat. Isot., 64(10/11), 1102–1107.10.1016/j.apradiso.2006.02.086Search in Google Scholar

10. Picolo, J. L. (1996). Absolute measurement of radon 222 activity. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equ., 369, 452–457.10.1016/S0168-9002(96)80029-5Search in Google Scholar

11. Liang, J., Yang, Z., Wang, L., Li, Z., Zhang, M., Liu, H., & Yuan, D. (2018). Development of the absolute standardization apparatus for radon-222 activity. Appl. Radiat. Isot., 134, 358–362.10.1016/j.apradiso.2017.07.05528827092Search in Google Scholar

12. Dersch, R. (2004). Primary and secondary measurements of 222Rn. Appl. Radiat. Isot., 60, 387–390.10.1016/j.apradiso.2003.11.04614987672Search in Google Scholar

13. Spring, P., Nedjadi, Y., Bailat, C., Triscome, G., & Bochud, F. (2006). Absolute activity measurement of radon gas at IRA-METAS. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equ., 568(2), 752–759.10.1016/j.nima.2006.07.055Search in Google Scholar

14. Kim, B. C., Lee, K. B., Park, T. S., Lee, J. M., Lee, S. H., Oh, P. J., Lee, M. K., & Ahn, J. K. (2012). Development of the primary measurement standard for gaseous radon-222 activity. Appl. Radiat. Isot., 70, 1934–1939.10.1016/j.apradiso.2012.02.02022607994Search in Google Scholar

15. Sabot, B., Pierre, S., & Cassette, P. (2016). An absolute radon 222 activity measurement system at LNELNHB. Appl. Radiat. Isot., 118, 167–174.10.1016/j.apradiso.2016.09.00927642726Search in Google Scholar

16. Cliff, K. D., Holub, R. F., Knutson, E. O., Lettner, H., & Solomon, S. B. (1994). International intercomparison of measurements of radon and radon decay products, Badgastein, Austria, September, 29–30, 1991. Chilton, Didcot, Oxon: National Radiological Protection Board.Search in Google Scholar

17. Droullard, R. F., Davis, T. H., Smith, E. E., & Holub, R. F. (1984). Radiation hazards test facilities at the Denver Research Center. Denver, CO: US Bureau of Mines.Search in Google Scholar

18. Azimi-Garakani, D. (1992). A comparison of different radon chambers. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 71(1), 99–102.10.1016/0168-583X(92)95347-TSearch in Google Scholar

19. Burian, I., Otahal, P., Vosahlik, J., & Pilecka, E. (2011). Czech primary radon measurement equipment. Radiat. Prot. Dosim., 145(2/3), 333–337.10.1093/rpd/ncr04121482617Search in Google Scholar

20. Ichitsubo, H., Yamada, Y., Shimo, M., & Koizumi, A. (2004). Development of a radon-aerosol chamber at NIRS – general design and aerosol performance. J. Aerosol Sci., 35, 217–232.10.1016/j.jaerosci.2003.08.002Search in Google Scholar

21. Skubacz, K., Chalupnik, S., Urban, P., & Wysocka, M. (2017). Radon chamber in the Central Mining Institute – The calibration facility for radon and radon progeny monitors. Radiat. Prot. Dosim., 177(1/2), 164–167.10.1093/rpd/ncx17729036377Search in Google Scholar

eISSN:
1508-5791
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Chemie, Nuklearchemie, Physik, Astronomie und Astrophysik, andere