Uneingeschränkter Zugang

Studies on hydrometallurgical processes using nuclear techniques to be applied in copper industry. I. Application of 64Cu radiotracer for investigation of copper ore leaching


Zitieren

1. KGHM Polska Miedź S.A. (2016). Integrated report for 2015. Retrieved August 30, 2017, from http://kghm.com/pl/node/4990.Search in Google Scholar

2. KGHM Polska Miedź S.A. (2016). KGHM Polska Miedź S. A. Strategy for 2017-2021 with an outlook to 2040. Retrieved November 10, 2017, from kghm.com/sites/kghm2014/files/kghm_strategy_2017-2021_1.pdf.Search in Google Scholar

3. Baran, A., Śliwka, M., & Lis, M. (2013). Selected properties of flotation tailings wastes deposited in the Gilów and Żelazny Most waste reservoirs regarding their potential environmental management. Arch. Min. Sci., 58(3), 969-978. DOI: 10.2478/amsc-2013-0068.10.2478/amsc-2013-0068Open DOISearch in Google Scholar

4. Gupta, C. K., & Mukherjee, T. K. (1990). Hydrometallurgy in extraction processes (Vol. 1). Boca Raton: CRC Press.Search in Google Scholar

5. Fleming, C. A. (1992). Hydrometallurgy of precious metals recovery. Hydrometallurgy, 30(1/3), 127-162.10.1016/0304-386X(92)90081-ASearch in Google Scholar

6. Tuncuk, A., Stazi, V., Akcil, A., Yazici, E. Y., & Deveci, H. (2012). Aqueous metal recovery techniques from e-scrap: hydrometallurgy in recycling. Miner. Eng., 25(1), 28-37.10.1016/j.mineng.2011.09.019Search in Google Scholar

7. Yang, R., Wang, S., Duan, H., Yan, X., Huang, Z., Guo, H., & Yang, X. (2016). Effi cient separation of copper and nickel from ammonium chloride solutions through the antagonistic effect of TRPO on Acorga M5640. Hydrometallurgy, 163, 18-23.10.1016/j.hydromet.2016.03.006Search in Google Scholar

8. Dreisinger, D. B., Richmond, G., Hess, F., & Lancaster, T. (2002). The competitive position of the Mt. Gordon copper process in the copper industry. In Proceedings of the ALTA 2002 Copper Hydrometallurgy Forum, Perth, Australia. ALTA Metallurgical Services.Search in Google Scholar

9. Antonijevic, M. M., Dimintrijevic, M., & Jankovic, Z. (1997). Leaching of pyrite with hydrogen peroxide in sulphuric acid. Hydrometallurgy, 46, 71-83.10.1016/S0304-386X(96)00096-5Search in Google Scholar

10. Marsden, J., Brewer, B., & Hazen, N. (2003). Copper concentrate leaching developments by Phelps Dodge Corporation. In C. Young, C. Anderson, D. Dreisinger, A. Alfantazi, A. James, & B. Harris (Eds.), Hydrometallurgy 2002. Proceedings of the 5th International Symposium honouring Professor Ian M. Ritchie (Vol. 2, pp. 1429-1446). Warrendale, PA: The Minerals, Metals and Materials Society.10.1002/9781118804407.ch28Search in Google Scholar

11. Dreisinger, D. (2004). New developments in hydrometallurgical treatment of copper concentrates. Eng. Min. J., 205, 32-35.Search in Google Scholar

12. Ngulube, R. (2016). Application of biohydrometallurgy to copper mining in Zambia: Prospects and opportunities. Int. J. Mineral Processing and Extractive Metallurgy, 1(4), 19-25.Search in Google Scholar

13. Baxter, K., Dreisinger, D. B., & Pratt, G. (2013). The Sepon Copper Project: Development of a fl owsheet. In C. Young, A. Alfantazi, C. Anderson, A. James, D. Dreisinger, & B. Harris (Eds.), Electrometallurgy and environmental hydrometallurgy (Vol. 2, pp. 1487-1502). Warrendale, PA: The Minerals, Metals and Materials Society.10.1002/9781118804407.ch31Search in Google Scholar

14. Watling, H. R. (2006). The bioleaching of sulphide minerals with emphasis on copper sulphides - A review. Hydrometallurgy, 84, 81-108.10.1016/j.hydromet.2006.05.001Open DOISearch in Google Scholar

15. Hyvärinen, O., Hämäläinen, M., & Leimala, R. (2002). Outokumpuhydrocopper™ process: A novel concept in copper production. Metall-Fachzeitschrift für Metallurgie, 56(11), 712-713.Search in Google Scholar

16. Dreisinger, D. (2006). Copper leaching from primary sulphides: Options for biological and chemical extraction of copper. Hydrometallurgy, 83(1/4), 10-20.10.1016/j.hydromet.2006.03.032Search in Google Scholar

17. Stiksma, J., Collins, M. J., Holloway, P., Masters, I. M., & Desroches, G. J. (2000). Process development studies by Dynatec for the pressure leaching of HBMS copper sulphide concentrates. CIM Bull., 93, 118-123.Search in Google Scholar

18. Wawszczak, D., Deptula, A., Lada, W., Smolinski, T., Olczak, T., Brykala, M., Wojtowicz, P., Rogowski, M., Milkowska, M., & Chmielewski, A. G. (2014). Studies of leaching of copper ores and fl otation wastes. J. Radioanal. Nucl. Chem., 300, 243-247.10.1007/s10967-014-3011-7Search in Google Scholar

19. Senanayake, G. (2009). A review of chloride assisted copper sulphide leaching by oxygenated sulphuric acid and mechanistic considerations. Hydrometallurgy, 98, 21-32.10.1016/j.hydromet.2009.02.010Open DOISearch in Google Scholar

20. Guettaf, H., Becis, A., Ferhat, K., Hanou, K., Bouchiha, D., & Ferrad, Y. F. (2009). Concentrationpurifi cation of uranium from an acid leaching solution. Physics Procedia, 2, 765-771.10.1016/j.phpro.2009.11.023Search in Google Scholar

21. Edwards, C. R., & Oliver, A. J. (2000). Uranium processing: A review of current methods and technology. JOM, 52(9), 12-20.10.1007/s11837-000-0181-2Search in Google Scholar

22. Roshani, M., & Kazemi, M. (2009). Studies on the leaching of an arsenic-uranium ore. Hydrometallurgy, 98, 304-307.10.1016/j.hydromet.2009.04.019Open DOISearch in Google Scholar

23. Leung, S., Heymann, L., & King, D. (2010). The recovery of uranium from acid leached ore using resin-in-pulp technology. In Proceedings of the 3rd International Conference on Uranium 40th Annual Hydrometallurgy Meeting, August 15-18, 2010 (Vol. 2, pp. 15-26). Saskatoon, Saskatchewan, Canada.Search in Google Scholar

24. Chmielewski, A. G., Urbański, T. S., & Migdał, W. (1997). Separation technologies for metals recovery from industrial wastes. Hydrometallurgy, 45, 333-344.10.1016/S0304-386X(96)00090-4Search in Google Scholar

25. Dybczyński, R. (1985). Zastosowania analizy aktywacyjnej. Chem. Anal., 30, 749-760.Search in Google Scholar

26. Cutmore, N. (2014). Nuclear technologies in mining and mineral processing. In P. Brisset, & S. Miskovic (Eds.), Development of radiometric methods for exploration and process optimization in mining and mineral industries. Report of the Consultant meeting Vienna, IAEA, 1-5 September 2014 ([1] p., section 4.1). Vienna: International Atomic Energy Agency.Search in Google Scholar

27. Palige, J., Chmielewski, A. G., Dziewoński, Z. R., Rahimi, H., Naimpour, A., Amini, A., Abedinzadeh, A., & Khalilipour, E. (1995). Radiotracer glass furnaces investigations. Nukleonika, 40(1), 67-80.Search in Google Scholar

28. Petryka, L., & Przewlocki, K. (1983). Radiotracer investigations of benefi ciation copper ore in the industrial fl otation process. Isotopenpraxis Isot. Environ. Health Stud., 19(10), 339-341.10.1080/10256018308544932Search in Google Scholar

29. Figueiredo, A. M. G., Avristcher, W., Masini, E. A., Diniz, S. C., & Abrão, A. (2002). Determination of lanthanides (La, Ce, Nd, Sm) and other elements in metallic gallium by instrumental neutron activation analysis. J. Alloy. Compd., 344(1/2), 36-39. DOI: 10.1016/S0925-8388(02)00301-8.10.1016/S0925-8388(02)00301-8Open DOISearch in Google Scholar

30. CSIRO. (2018). Retrieved August 30, 2018, from www.csiro.au/en/Research/Mining-manufacturing.Search in Google Scholar

31. Chmielewski, T. (2007). Atmospheric leaching of shale by-product from Lubin concentrator. Physicochem. Probl. Minerals Pro., 41, 337-348.Search in Google Scholar

32. Chmielewski, T. (2009). Ługowanie atmosferyczne frakcji łupkowej jako alternatywa zmian technologicznych w ZWR Lubin. In Materiały XII Seminarium “Metody hydrometalurgiczne a rozwój produkcji w KGHM Polska Miedź S.A.”, 17 February 2009 (pp. 37-53). Wrocław: KGHM Cuprum.Search in Google Scholar

33. Bujdoso, E., Feher, I., & Kardos, G. (1973). Activation and decay tables of radioisotopes. Amsterdam, New York: Elsevier.Search in Google Scholar

34. Abdel-Aal, E. A. (2000). Kinetics of sulphuric acid leaching of low grade zinc silicate ore. Hydrometallurgy, 55(3), 247-254.10.1016/S0304-386X(00)00059-1Open DOISearch in Google Scholar

35. Espiari, S., Rashchi, F., & Sadrnezhaad, S. K. (2006). Hydrometallurgical treatment of tailings with high zinc content. Hydrometallurgy, 82(1/2), 54-62.10.1016/j.hydromet.2006.01.005Search in Google Scholar

36. Ahmed, I. M., Nayl, A. A., & Daoud, J. A. (2016). Leaching and recovery of zinc and copper from brass slag by sulphuric acid. J. Saudi Chem. Soc., 20, S280-S285. DOI: 10.1016/j.jscs.2012.11.003.10.1016/j.jscs.2012.11.003Open DOISearch in Google Scholar

37. Bodas, M. G. (1996). Hydrometallurgical treatment of zinc silicate ore from Thailand. Hydrometallurgy, 40(1/2), 37-49.10.1016/0304-386X(94)00076-FOpen DOISearch in Google Scholar

38. Akcil, A. (2002). A preliminary research on acid pressure leaching of pyritic copper ore in Kure Copper Mine, Turkey. Miner. Eng., 15(2), 695-699.10.1016/S0892-6875(02)00165-6Search in Google Scholar

39. Antonijevic, M. M., & Bogdanovic, G. D. (2004). Investigation of the leaching of chalcopyritic ore in acidic solutions. Hydrometallurgy, 73, 245-256.10.1016/j.hydromet.2003.11.003Search in Google Scholar

40. Chmielewski, T. (2015). Development of a hydrometallurgical technology for production of metals from KGHM Polska Miedz S.A. concentrates. Physicochem. Probl. Mineral Pro., 51(1), 335-350.Search in Google Scholar

41. Kumar, M., Lee, J. C., Kim, M. S., Jeong, J., & Yoo , K. (2014). Leaching of metals from waste printed circuit boards (WPCBs) using sulphuric and nitric acids. Environ. Eng. Manag. J., 13(10), 2601-2607.10.30638/eemj.2014.290Search in Google Scholar

42. Havlik, T., Dvorscikova, J., Ivanova, Z., & Kammel, R. (1999). Sulphuric acid chalcopyrite leaching using ozone as oxidant. Metall-Fachzeitschrift für Metallurgie, 53(1), 57-60.Search in Google Scholar

43. Tsogtkhankhai, D., Mamyachenkov, S. V., Anisimova, O. S., & Naboichenko, S. S. (2011). Thermodynamics of reactions during nitric acid leaching of minerals of a copper concentrate. Russ. J. Non-Ferrous Metals, 52(2), 135-139.10.3103/S106782121102012XSearch in Google Scholar

44. Vanýsek, P. (2002). Electrochemical series. In D. R. Lide (Ed.), CRC Handbook of chemistry and physics (83rd ed.) (pp. 823-833). Boca Raton: CRC Press.Search in Google Scholar

eISSN:
0029-5922
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Chemie, Nuklearchemie, Physik, Astronomie und Astrophysik, andere