Uneingeschränkter Zugang

Long term variations of river temperature and the influence of air temperature and river discharge: case study of Kupa River watershed in Croatia


Zitieren

Albek, M., Albek, E., 2009. Stream temperature trends in Turkey. Clean Soil Air & Water, 37, 142–149.10.1002/clen.200700159Search in Google Scholar

Ayllón, D., Almodóvar, A., Nicola, G.G., Parra, I., Elvira, B., 2012. A new biological indicator to assess the ecological status of Mediterranean trout type streams. Ecological Indicators, 20, 295–303.10.1016/j.ecolind.2012.02.028Search in Google Scholar

Bonacci, O., Andrić, I., 2010. Impact of an inter-basin water transfer and reservoir operation on a karst open streamflow hydro-logical regime: an example from the Dinaric karst (Croatia). Hydrological Processes, 24, 3852–3863.10.1002/hyp.7817Search in Google Scholar

Bonacci, O., Trninić, D., Roje-Bonacci, T., 2008. Analysis of the water temperature regime of the Danube and its tributaries in Croatia. Hydrological Processes, 22, 1014–1021.10.1002/hyp.6975Search in Google Scholar

Chen, D., Hu, M., Guo, Y., Dahlgren, R.A., 2016. Changes in river water temperature between 1980 and 2012 in Yongan water-shed, eastern China: magnitude, drivers and models. Journal of Hydrology, 533, 191–199.10.1016/j.jhydrol.2015.12.005Search in Google Scholar

Cingi, S., Keinänen, M., Vuorinen, P.J., 2010. Elevated water temperature impairs fertilization and embryonic development of whitefish Coregonus lavaretus. Journal of Fish Biology, 76, 502–521.10.1111/j.1095-8649.2009.02502.xSearch in Google Scholar

Cox, B.A., Whitehead, P.G., 2009. Impacts of climate change scenarios on dissolved oxygen in the River Thames, UK. Hydrology Research, 40, 138–152.10.2166/nh.2009.096Search in Google Scholar

DeWeber, J.T., Wagner, T., 2014. A regional neural network ensemble for predicting mean daily river water temperature. Journal of Hydrology, 517, 187–200.10.1016/j.jhydrol.2014.05.035Search in Google Scholar

Feng, M., Zolezzi, G., Pusch, M., 2018. Effects of thermopeaking on the thermal response of alpine river systems to heatwaves. Science of the Total Environment, 612, 1266–1275.10.1016/j.scitotenv.2017.09.042Search in Google Scholar

Frančišković-Bilinski, S., Bhattacharya, A.K., Bilinski, H., Bhattacharya, B.D., Mitra, A., Sarkar, S.K., 2012. Fluvial geo-morphology of the Kupa River drainage basin, Croatia: a perspective of its application in river management and pollution studies. Zeitschrift für Geomorphologie, 56, 93–119.10.1127/0372-8854/2011/0056Search in Google Scholar

Fullerton, A.H., Torgersen, C.E., Lawler, J.J., Steel, E.A., Eber-sole, J.L., Lee, S.Y., 2018. Longitudinal thermal heterogeneity in rivers and refugia for coldwater species: effects of scale and climate change. Aquatic Sciences, 80, 3.10.1007/s00027-017-0557-9Search in Google Scholar

Gooseff, M.M., Strzepek, K., Chapra, S.C., 2005. Modeling the potential effects of climate change on water temperature downstream of a shallow reservoir, lower Madison River, MT. Climatic Change, 68, 331–353.10.1007/s10584-005-9076-0Search in Google Scholar

Hadzima-Nyarko, M., Rabi, A., Šperac, M., 2014. Implementation of artificial neural networks in modeling the water-air temperature relationship of the river Drava. Water Resources Management, 28, 1379–1394.10.1007/s11269-014-0557-7Search in Google Scholar

Hardenbicker, P., Viergutz, C., Becker, A., Kirchesch, V., Nilson, E., Fischer, H., 2017. Water temperature increases in the river Rhine in response to climate change. Regional Environmental Change, 17, 299–308.10.1007/s10113-016-1006-3Search in Google Scholar

Heddam, S., 2016. New modelling strategy based on radial basis function neural network (RBFNN) for predicting dissolved oxygen concentration using the components of the Gregorian calendar as inputs: case study of Clackamas River, Oregon, USA. Modeling Earth Systems & Environment, 2, 1–5.10.1007/s40808-016-0232-5Search in Google Scholar

Heddam, S., Kisi, O., 2017. Extreme learning machines: a new approach for modeling dissolved oxygen (DO) concentration with and without water quality variables as predictors. Environmental Science and Pollution Research, 24, 16702–16724.10.1007/s11356-017-9283-zSearch in Google Scholar

Isaak, D.J., Wollrab, S., Horan, D., Chandler, G., 2012. Climate change effects on stream and river temperatures across the northwest U.S. from 1980–2009 and implications for salmonid fishes. Climatic Change, 113, 499–524.10.1007/s10584-011-0326-zSearch in Google Scholar

Jackson, F.L., Fryer, R.J., Hannah, D.M., Millar, C.P., Malcolm, I.A., 2018. A spatio-temporal statistical model of maximum daily river temperatures to inform the management of Scotland’s Atlantic salmon rivers under climate change. Science of the Total Environment, 621, 1543–1558.10.1016/j.scitotenv.2017.09.010Search in Google Scholar

Kim, J.H., Park, H.J., Hwang, I.K., Han, J.M., Kim, D.H., Oh, C.W., Lee, J.S., Kang, J.C., 2017. Toxic effects of juvenile sablefish, Anoplopoma fimbria by ammonia exposure at different water temperature. Environmental Toxicology and Pharmacology, 54, 169–176.10.1016/j.etap.2017.07.008Search in Google Scholar

Leblanc, R.T., Brown, R.D., Fitzgibbon, J.E., 1997. Modeling the effects of land use change on the water temperature in unregulated urban streams. Journal of Environmental Management, 49, 445–469.10.1006/jema.1996.0106Search in Google Scholar

Lepori, F., Pozzoni, M., Pera, S., 2014. What drives warming trends in streams? A case study from the Alpine Foothills. River Research and Applications, 31, 663–675.10.1002/rra.2763Search in Google Scholar

Markovic, D., Scharfenberger, U., Schmutz, S., Pletterbauer, F., Wolter, C., 2013. Variability and alterations of water temperatures across the Elbe and Danube River Basins. Climatic Change, 119, 375–389.10.1007/s10584-013-0725-4Search in Google Scholar

Moatar, F., Gailhard, J., 2006. Water temperature behaviour in the River Loire since 1976 and 1881. Comptes Rendus Geoscience, 338, 319–328.10.1016/j.crte.2006.02.011Search in Google Scholar

Null, S.E., Viers, J.H., Deas, M.L., Tanaka, S.K., Mount, J.F., 2013. Stream temperature sensitivity to climate warming in California’s Sierra Nevada: impacts to coldwater habitat. Climatic Change, 116, 149–170.10.1007/s10584-012-0459-8Search in Google Scholar

Orr, H.G., Simpson, G.L., des Clers, S., Watts, G., Hughes, M., Hannaford, J., Dunbar, M.J., Laizé, C.L.R., Wilby, R.L., Battarbee, R.W., Evans, R., 2015. Detecting changing river temperatures in England and Wales. Hydrological Processes, 29, 752–766.10.1002/hyp.10181Search in Google Scholar

Pekárová, P., Miklánek, P., Halmová, D., Onderka, M., Pekár, J., Kučárová, K., Liová, S., Škoda, P., 2011. Long-term trend and multi-annual variability of water temperature in the pristine Bela River basin (Slovakia). Journal of Hydrology, 400, 333–340.10.1016/j.jhydrol.2011.01.048Search in Google Scholar

Piotrowski, A.P., Napiorkowski, M.J., Napiorkowski, J.J., Osuch, M., 2015. Comparing various artificial neural network types for water temperature prediction in rivers. Journal of Hydrology, 529, 302–315.10.1016/j.jhydrol.2015.07.044Search in Google Scholar

Rice, K.C., Jastram, J.D., 2015. Rising air and stream-water temperatures in Chesapeake Bay region, USA. Climatic Change, 128, 127–138.10.1007/s10584-014-1295-9Search in Google Scholar

Schär, C., Vidale, P.L., Lüthi, D., Frei, C., Häberli, C., Liniger, M.A., Appenzeller, C., 2004. The role of increasing temperature variability in European summer heatwaves. Nature, 427, 332–336.10.1038/nature02300Search in Google Scholar

Sohrabi, M.M., Benjankar, R., Tonina, D., Wenger, S.J., Isaak, D.J., 2017. Estimation of daily stream water temperatures with a Bayesian regression approach. Hydrological Processes, 31, 1719–1733.10.1002/hyp.11139Search in Google Scholar

Temizyurek, M., Dadaser-Celik, F., 2018. Modelling the effects of meteorological parameters on water temperature using artificial neural networks. Water Science and Technology, 77, 1724–1733.10.2166/wst.2018.058Search in Google Scholar

Toffolon, M., Piccolroaz, S., 2015. A hybrid model for river water temperature as a function of air temperature and discharge. Environmental Research Letters, 10, 114011.10.1088/1748-9326/10/11/114011Search in Google Scholar

van Vliet, M.T.H., Ludwig, F., Zwolsman, J.J.G., Weedon, G.P., Kabat, P., 2011. Global river temperatures and sensitivity to atmospheric warming and changes in river flow. Water Resources Research, 47, 247–255.10.1029/2010WR009198Search in Google Scholar

van Vliet, M.T.H., Franssen, W.H.P., Yearsley, J.R., Ludwig, F., Haddeland, I., Lettenmaier, D.P., Kabat, P., 2013. Global river discharge and water temperature under climate change. Global Environmental Change, 23, 450–464.10.1016/j.gloenvcha.2012.11.002Search in Google Scholar

Webb, B.W., Clack, P.D., Walling, D.E., 2003. Water–air temperature relationships in a Devon river system and the role of flow. Hydrological Processes, 17, 3069–3084.10.1002/hyp.1280Search in Google Scholar

Žganec, K., 2012. The effects of water diversion and climate change on hydrological alteration and temperature regime of karst rivers in central Croatia. Environmental Monitoring and Assessment, 184, 5705–5723.10.1007/s10661-011-2375-1Search in Google Scholar

Zhu, S., Heddam, S., Nyarko, E.K., Hadzima-Nyarko, M., Piccolroaz, S., Wu, S., 2019. Modeling daily water temperature for rivers: comparison between adaptive neuro-fuzzy inference systems and artificial neural networks models. Environmental Science and Pollution Research, 26, 402–420.10.1007/s11356-018-3650-2Search in Google Scholar

eISSN:
0042-790X
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere