Zitieren

1. Mitropoulos FA, Odim J, Marelli D, et al. Outcome of hearts with cold ischemic time greater than 300 minutes. A casematched study. Eur J Cardiothorac Surg. 2005;28:143-148. doi: 10.1016/j.ejcts.2005.01.067.10.1016/j.ejcts.2005.01.06715982597Open DOISearch in Google Scholar

2. Tonkin AM, Blankenberg S, Kirby A, et al. Biomarkers in stable coronary heart disease, their modulation and cardiovascular risk: The LIPID biomarker study. Int J Cardiol. 2015;201:499-507. doi: 10.1016/j.ijcard.2015.07.080.10.1016/j.ijcard.2015.07.08026318511Open DOISearch in Google Scholar

3. Vella RK, Pullen C, Coulson FR, Fenning AS. Resveratrol Prevents Cardiovascular Complications in the SHR/STZ Rat by Reductions in Oxidative Stress and Inflammation. Biomed Res Int. 2015;2015:918123. doi: 10.1155/2015/918123.10.1155/2015/918123435272725802871Search in Google Scholar

4. Melania L, Alexandru B, Rogobete F, et al. The Use of Redox Expression and Associated Molecular Damage to Evaluate the Inflammatory Response in Critically Ill Patient with Severe Burn. Biochem Genet. 2016;54:753-768. doi: 10.1007/s10528-016-9763-810.1007/s10528-016-9763-827465592Open DOISearch in Google Scholar

5. Rogobete AF, Sandesc D, Papurica M, et al. The influence of metabolic imbalances and oxidative stress on the outcome of critically ill polytrauma patients: a review. Burn Trauma. 2017;5:8. doi: 10.1186/s41038-017-0073-0.10.1186/s41038-017-0073-0534143228286784Open DOISearch in Google Scholar

6. Yang Y, Lv J, Jiang S, et al. The emerging role of Toll-like receptor 4 in myocardial inflammation. Cell Death Dis. 2016;7:e2234. doi: 10.1038/cddis.2016.140.10.1038/cddis.2016.140491766927228349Open DOISearch in Google Scholar

7. Weiss JBW, Eisenhardt SU, Stark GB, Bode C, Moser M, Grundmann S. MicroRNAs in ischemia-reperfusion injury. Am J Cardiovasc Dis. 2012;2:237-247.Search in Google Scholar

8. Mansour Z, Charles AL, Kindo M, et al. Remote effects of lower limb ischemia-reperfusion: Impaired lung, unchanged liver, and stimulated kidney oxidative capacities. Biomed Res Int. 2014;2014:392390. doi: 10.1155/2014/392390.10.1155/2014/392390414255425180180Search in Google Scholar

9. David VL, Ercisli MF, Rogobete AF, et al. Early Prediction of Sepsis Incidence in Critically Ill Patients Using Specific Genetic Polymorphisms. Biochem Genet. 2017;55:193-203. doi: 10.1007/s10528-016-9785-2.10.1007/s10528-016-9785-227943002Open DOISearch in Google Scholar

10. Kloppenborg RP, Nederkoorn PJ, van der Graaf Y, Geerlings MI. Homocysteine and cerebral small vessel disease in patients with symptomatic atherosclerotic disease. The SMARTMR study. Atherosclerosis. 2011;216:461-466. doi: 10.1016/j.atherosclerosis.2011.02.027.10.1016/j.atherosclerosis.2011.02.02721411090Search in Google Scholar

11. Bedreag OH, Rogobete AF, Sandesc D, et al. The Effects of Homocysteine Level in the Critically Ill Patient. A Review. Journal of Interdisciplinary Medicine. 2016;1:131-136. doi: 10.1515/jim-2016-0025.10.1515/jim-2016-0025Open DOISearch in Google Scholar

12. Li H, Horke S, Förstermann U. Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis. 2014;237:208-219. doi: 10.1016/j.atherosclerosis.2014.09.001.10.1016/j.atherosclerosis.2014.09.00125244505Open DOISearch in Google Scholar

13. Bedreag OH, Rogobete AF, Cradigati CA, et al. A novel evaluation of microvascular damage in critically ill polytrauma patients by using circulating microRNAs. Romanian Journal of Laboratory Medicine. 2016;24:21-30. doi: 10.1515/rrlm-2016-0015.10.1515/rrlm-2016-0015Open DOISearch in Google Scholar

14. Gareus R, Kotsaki E, Xanthoulea S, et al. Article Endothelial Cell-Specific NF-k B Inhibition Protects Mice from Atherosclerosis. Cell Metab. 2008;8:372-383. doi: 10.1016/j.cmet.2008.08.016.10.1016/j.cmet.2008.08.01619046569Search in Google Scholar

15. Papurica M, Rogobete AF, Sandesc D, et al. The Expression of Nuclear Transcription Factor Kappa B (NF-κB) in the Case of Critically Ill Polytrauma Patients with Sepsis and Its Interactions with microRNAs. Biochem Genet. 2016;54:337-347. doi: 10.1007/s10528-016-9727-z.10.1007/s10528-016-9727-z27003424Open DOISearch in Google Scholar

16. Bedreag OH, Rogobete AF, Sărăndan M, et al. Oxidative stress and antioxidant therapy in traumatic spinal cord injuries. Rom J Anaesth Intensive Care. 2014;21:123-129.Search in Google Scholar

17. Bedreag OH, Rogobete AF, Sarandan M, et al. Oxidative stress in severe pulmonary trauma in critical ill patients. Antioxidant therapy in patients with multiple trauma – a review. Anaesthesiol Intensive Ther. 2015;47:351-359. doi: 10.5603/AIT.a2015.0030.10.5603/AIT.a2015.003026037258Open DOISearch in Google Scholar

18. Bedreag OH, Sandesc D, Chiriac SD, et al. The Use of Circulating miRNAs as Biomarkers for Oxidative Stress in Critically Ill Polytrauma Patients. Clin Lab. 2016;62:263-274. doi: 10.7754/Clin.Lab.2015.150740.10.7754/Clin..2015.150740Open DOISearch in Google Scholar

19. Papurica M, Rogobete AF, Sandesc D, et al. Advances in biomarkers in critical ill polytrauma patients. Clin Lab. 2016;62:977-986. doi: 10.7754/Clin.Lab.2015.151103.10.7754/Clin..2015.151103Open DOISearch in Google Scholar

20. Horhat FG, Gundogdu F, David LV, et al. Early Evaluation and Monitoring of Critical Patients with Acute Respiratory Distress Syndrome (ARDS) Using Specific Genetic Polymorphisms. 2017;55:204-211. doi: 10.1007/s10528-016-9787-0.10.1007/s10528-016-9787-028070694Open DOISearch in Google Scholar

21. Papurica M, Rogobete AF, Sandesc D, et al. Redox Changes Induced by General Anesthesia in Critically Ill Patients with Multiple Traumas. Mol Biol Int. 2015;2015:238586. doi: 10.1155/2015/238586.10.1155/2015/238586467461526693352Search in Google Scholar

22. Dumache R, Rogobete AF, Bedreag OH, et al. Use of miRNAs as Biomarkers in Sepsis. Anal Cell Pathol (Amst). 2015;2015:186716. doi: 10.1155/2015/186716.10.1155/2015/186716449937526221578Search in Google Scholar

23. Sandesc M, Rogobete AF, Bedreag OH, et al. Analysis of oxidative stress-related markers in critically ill polytrauma patients: An observational prospective single-center study. Bosn J Basic Med Sci. 2018;18:191-197. doi: 10.17305/bjbms.2018.2306.10.17305/bjbms.2018.2306598853929310566Search in Google Scholar

24. Magenta A, Cencioni C, Fasanaro P, et al. miR-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via ZEB1 inhibition. Cell Death Differ. 2011;18:1628-1639. doi: 10.1038/cdd.2011.42.10.1038/cdd.2011.42317212021527937Open DOISearch in Google Scholar

25. Zaccagnini G, Martelli F, Fasanaro P, et al. p66 ShcA Modulates Tissue Response to Hindlimb Ischemia. Circulation. 2004;109:2917-2923. doi: 10.1161/01.CIR.0000129309.58874.0F.10.1161/01.CIR.0000129309.58874.0Open DOISearch in Google Scholar

26. Lin Y, Liu X, Cheng Y, et al. Involvement of MicroRNAs in Hydrogen Peroxide-mediated Gene Regulation and Cellular Injury Response in Vascular Smooth Muscle Cells. J Biol Chem. 2009;284:7903-7913. doi: 10.1074/jbc.M806920200.10.1074/jbc.806920200Open DOISearch in Google Scholar

27. Cybulsky MI, Iiyama K, Li H, et al. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Invest. 2001;107:1209-1210. doi: 10.1172/JCI11871.10.1172/JCI1187120929811375415Open DOISearch in Google Scholar

28. Lu J, Liu F, Liu D, et al. Amlodipine and atorvastatin improved hypertensive cardiac hypertrophy through regulation of receptor activator of nuclear factor kappa B ligand/receptor activator of nuclear factor kappa B/osteoprotegerin system in spontaneous hypertension rats. Exp Biol Med. 2016;241:1237-1249. doi: 10.1177/1535370216630180.10.1177/1535370216630180495031226908571Open DOISearch in Google Scholar

29. Bendaya I, Riahi A, Kharat M, et al. STAT1 and STAT6 Act as Antagonistic Regulators of PPAR γ in Diabetic Patients with and without Cardiovascular Diseases. Clin Lab. 2018;64:287-294. doi: 10.7754/Clin.Lab.2017.171013.10.7754/Clin..2017.171013Open DOISearch in Google Scholar

30. Fehlmann T, Meese E, Keller A. Exploring ncRNAs in Alzheimer’s disease by miRMaster. Oncotarget. 2017;8:3771-3772. doi: 10.18632/oncotarget.14054.10.18632/oncotarget.14054535479328030833Search in Google Scholar

31. Bedreag OH, Rogobete AF, Sandesc D, et al. Modulation of the Redox Expression and Inflammation Response in the Crtically Ill Polytrauma Patient with Thoracic Injury. Statistical Correlations between Antioxidant Therapy and Clinical Aspects. A Retrospective Single Center Study. Clin Lab. 2016;62:1747-1759. doi: 10.7754/Clin.Lab.2016.160206.10.7754/Clin..2016.160206Open DOISearch in Google Scholar

32. Bratu LM, Rogobete AF, Papurica M, et al. Literature Research Regarding miRNAs’ Expression in the Assessment and Evaluation of the Critically Ill Polytrauma Patient with Traumatic Brain and Spinal Cord Injury. Clin Lab. 2016;62:2019-2024. doi: 10.7754/Clin.Lab.2016.160327.10.7754/Clin..2016.160327Open DOISearch in Google Scholar

33. Dumache R, Ciocan V, Muresan C, Enache A. Molecular DNA Analysis in Forensic Identification. Clin Lab. 2016;62:245-248. doi: 10.7754/Clin.Lab.2015.150414.10.7754/Clin..2015.150414Open DOISearch in Google Scholar

34. Cannino G, Di Liegro CM, Rinaldi AM. Nuclear-mitochondrial interaction. Mitochondrion. 2007;7:359-366. doi: 10.1016/j.mito.2007.07.001.10.1016/j.mito.2007.07.00117822963Open DOISearch in Google Scholar

35. Karginov FV, Conaco C, Xuan Z, et al. A biochemical approach to identifying microRNA targets. Proc Natl Acad Sci U S A. 2007;104:19291-19296. doi: 10.1073/pnas.0709971104.10.1073/pnas.0709971104214828318042700Open DOISearch in Google Scholar

36. Yang Z, Cappello T, Wang L. Emerging role of microRNAs in lipid metabolism. Acta Pharm Sin B. 2015;5:145-150. doi: 10.1016/j.apsb.2015.01.002.10.1016/j.apsb.2015.01.002462921526579440Open DOISearch in Google Scholar

37. Pirtea L, Grigoraş D, Matusz P, et al. Human Papilloma Virus Persistence after Cone Excision in Women with Cervical High Grade Squamous Intraepithelial Lesion: A Prospective Study. Can J Infect Dis Med Microbiol. 2016;2016:3076380. doi: 10.1155/2016/3076380.10.1155/2016/3076380490456927366164Open DOISearch in Google Scholar

38. Pirtea L, Grigoraş D, Matusz P, et al. Age and HPV type as risk factors for HPV persistence after loop excision in patients with high grade cervical lesions: an observational study. BMC Surg. 2016;16:1-7. doi: 10.1186/s12893-016-0185-7.10.1186/s12893-016-0185-7505313027716233Open DOISearch in Google Scholar

39. Pirtea L, Raica M, Cimpean AM (2012) Endothelial cell activation and proliferation in ovarian tumors: Two distinct steps as potential markers for antiangiogenic therapy response. Mol Med Rep. 2012;5:1181-1184. doi: 10.3892/mmr.2012.812.10.3892/mmr.2012.81222378599Open DOISearch in Google Scholar

40. Zhang X, Azhar G, Wei JY. The Expression of microRNA and microRNA Clusters in the Aging Heart. PLoS One. 2012;7:1-13. doi: 10.1371/journal.pone.0034688.10.1371/journal.pone.0034688332949322529925Open DOISearch in Google Scholar

41. Dumache R, Ciocan V, Muresan C, et al. Circulating microRNAs as promising biomarkers in forensic body fluids identification. Clin Lab. 2015;61:1129-1135. doi: 10.7754/Clin.Lab.2015.150207.10.7754/Clin..2015.150207Open DOISearch in Google Scholar

42. Dumache R, Muresan C, Ciocan V, et al. Post-Mortem Identification of a Fire Carbonized Body by STR Genotyping. Clin Lab. 2016;62:2033-2037. doi: 10.7754/Clin.Lab.2016.160417.10.7754/Clin..2016.160417Open DOISearch in Google Scholar

43. Ticlea M, Melania L, Bodog F, Horea O. The Use of Exosomes as Biomarkers for Evaluating and Monitoring Critically Ill Polytrauma Patients with Sepsis. Biochem Genet. 2017;55:1-9. doi: 10.1007/s10528-016-9773-6.10.1007/s10528-016-9773-627612681Open DOISearch in Google Scholar

44. Nitu R, Florin A, Gundogdu F, et al. microRNAs Expression as Novel Genetic Biomarker for Early Prediction and Continuous Monitoring in Pulmonary Cancer. Biochem Genet. 2017;55:281-290. doi: 10.1007/s10528-016-9789-y.10.1007/s10528-016-9789-y28070693Open DOISearch in Google Scholar

45. Rogobete AF, Bedreag OH, Popovici SE, et al. Detection of Myocardial Injury Using miRNAs Expression as Genetic Biomarkers in Acute Cardiac Care. Journal of Cardiovascular Emergencies. 2016;2:169-172. doi: 10.1515/jce-2016-0025.10.1515/jce-2016-0025Open DOISearch in Google Scholar

46. Papurica M, Rogobete AF, Sandesc D, et al. Using the Expression of Damage-Associated Molecular Pattern (DAMP) for the Evaluation and Monitoring of the Critically Ill Polytrauma Patient. Clin Lab. 2016;62:1829-1840. doi: 10.7754/Clin.Lab.2016.160226.10.7754/Clin..2016.160226Open DOISearch in Google Scholar

47. Sandesc M, Dinu A, Rogobete AF, et al. Circulating microRNAs expressions as genetic biomarkers in pancreatic cancer patients continuous non-invasive monitoring. Clin Lab. 2017;63:1561-1566. doi: 10.7754/Clin.Lab.2017.170608.10.7754/Clin..2017.170608Open DOISearch in Google Scholar

48. Negoita SI, Sandesc D, Rogobete AF, et al (2017) MiRNAs expressions and interaction with biological systems in patients with Alzheimer’s disease. Using miRNAs as a diagnosis and prognosis biomarker. Clin Lab. 2017;63:1315-1321. doi: 10.7754/Clin.Lab.2017.170327.10.7754/Clin..2017.170327Open DOISearch in Google Scholar

49. Bratu LM, Rogobete AF, Papurica M, et al. Literature Research Regarding miRNAs’ Expression in the Assessment and Evaluation of the Critically Ill Polytrauma Patient with Traumatic Brain and Spinal Cord Injury. Clin Lab. 2016;62:2019-2024. doi: 10.7754/Clin.Lab.2016.160327.10.7754/Clin..2016.160327Open DOISearch in Google Scholar

50. Bedreag OH, Sandesc D, Chiriac SD, et al. The Use of Circulating miRNAs as Biomarkers for Oxidative Stress in Critically Ill Polytrauma Patients. Clin Lab. 2016;62:263-274.doi: 10.7754/Clin.Lab.2015.150740.10.7754/Clin..2015.150740Open DOISearch in Google Scholar

51. McCall CE, El Gazzar M, Liu T, Vachharajani V, Yoza B. Epigenetics, bioenergetics, and microRNA coordinate genespecific reprogramming during acute systemic inflammation. J Leukoc Biol. 2011;90:439-46. doi: 10.1189/jlb.0211075.10.1189/jlb.0211075315790121610199Open DOISearch in Google Scholar

52. Olivieri F, Rippo MR, Prattichizzo F, et al. Toll like receptor signaling in “inflammaging”: microRNA as new players. Immun Ageing. 2013;10:11. doi: 10.1186/1742-4933-10-11.10.1186/1742-4933-10-11361818823506673Open DOISearch in Google Scholar

53. Ucar A, Gupta SK, Fiedler J, et al. The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat Commun. 2012;3:1078. doi: 10.1038/ncomms2090.10.1038/ncomms2090365799823011132Open DOISearch in Google Scholar

54. Long G, Wang F, Duan Q, et al. Human Circulating MicroRNA-1 and MicroRNA-126 as Potential Novel Indicators for Acute Myocardial Infarction. Int J Biol Sci. 2012;8:811-888. doi: 10.7150/ijbs.4439.10.7150/ijbs.4439337288522719221Search in Google Scholar

55. Greco S, Gorospe M, Martelli F. Noncoding RNA in age-related cardiovascular diseases. J Mol Cell Cardiol. 2015;83:142-155. doi: 10.1016/j.yjmcc.2015.01.011.10.1016/j.yjmcc.2015.01.011550946925640162Open DOISearch in Google Scholar

56. Fichtlscherer S, Rosa S De, Fox H, et al. Circulating MicroRNAs in Patients With Coronary Artery Disease. Circ Res. 2010;107:677-684. doi: 10.1161/CIRCRESAHA.109.215566.10.1161/CIRCRESAHA.109.21556620595655Open DOISearch in Google Scholar

57. Romaine SPR, Tomaszewski M, Condorelli G, Samani NJ. MicroRNAs in cardiovascular disease: An introduction for clinicians. Heart. 2015;101:921-928. doi: 10.1136/heartjnl-2013-305402.10.1136/heartjnl-2013-305402448426225814653Open DOISearch in Google Scholar

58. Cheng Y, Tan N, Yang J, et al. A translational study of circulating cell-free microRNA-1 in acute myocardial infarction. 2010;95:87-95. doi: 10.1042/CS20090645.10.1042/CS20090645359381520218970Open DOISearch in Google Scholar

59. Gidlöf O, Andersson P, Pals J Van Der, et al. Cardiospecific microRNA Plasma Levels Correlate with Troponin and Cardiac Function in Patients with ST Elevation Myocardial Infarction, Are Selectively Dependent on Renal Elimination, and Can Be Detected in Urine Samples. Cardiology. 2011;118:217-226. doi: 10.1159/000328869.10.1159/00032886921701171Open DOISearch in Google Scholar

60. Wang R, Li N, Zhang Y, et al. Circulating MicroRNAs are Promising Novel Biomarkers of Acute Myocardial Infarction. Intern Med. 2011;50:1789-1795. doi: 10.2169/internalmedicine.50.5129.10.2169/internalmedicine.50.512921881276Open DOISearch in Google Scholar

61. Alessandra YD, Carena MC, Spazzafumo L, et al. Diagnostic Potential of Plasmatic MicroRNA Signatures in Stable and Unstable Angina. PLoS One. 2013;8:e80345. doi: 10.1371/journal.pone.0080345.10.1371/journal.pone.0080345382987824260372Search in Google Scholar

62. Hoekstra M, van der Lans CAC, Halvorsen B, et al. The peripheral blood mononuclear cell microRNA signature of coronary artery disease. Biochem Biophys Res Commun. 2010;394:792-797. doi: https://doi.org/10.1016/j.bbrc.2010.03.075.10.1016/j.bbrc.2010.03.07520230787Open DOISearch in Google Scholar

63. Tijsen AJ, Creemers EE, Moerland PD, et al. MiR423-5p as a circulating biomarker for heart failure. Circ Res. 2010;106:1035-1039. doi: 10.1161/CIRCRESAHA.110.218297.10.1161/CIRCRESAHA.110.21829720185794Open DOISearch in Google Scholar

64. Caporali A, Meloni M, Vo C, et al. Deregulation of microRNA-503 Contributes to Diabetes Mellitus-Induced Impairment of Endothelial Function and Reparative Angiogenesis After Limb Ischemia. Circulation. 2011;123:282-291. doi: 10.1161/CIRCULATIONAHA.110.952325.10.1161/CIRCULATIONAHA.110.95232521220732Open DOISearch in Google Scholar

65. Liu C, Liu N, Cao B, et al. CircRNAs as Potential Biomarkers in Gastrointestinal Tract Tumors : Opportunities and Challenges. Clin Lab. 2018;64:141-145. doi: 10.7754/Clin.Lab.2017.170731.10.7754/Clin..2017.170731Open DOISearch in Google Scholar

66. Giden R, Gökdemir MT, Erel Ö, et al. The Relationship Between Serum Thiol Levels and Thiol/Disulfide Homeostasis with Head Trauma in Children. Clin Lab. 2018;64:163-168. doi: 10.7754/Clin.Lab.2017.170816.10.7754/Clin..2017.170816Open DOISearch in Google Scholar

67. Ma X, Buscaglia LEB, Barker JR, Li Y. MicroRNAs in NF-k B signaling. J Mol Cell Biol. 2011;3:159-166. doi: 10.1093/jmcb/mjr007.10.1093/jmcb/mjr007310401321502305Open DOISearch in Google Scholar

68. Oeckinghaus A, Ghosh S. The NF-k B Family of Transcription Factors and Its Regulation. Cold Spring Harb Perspect Biol. 2009;1:a000034. doi: 10.1101/cshperspect.a000034.10.1101/cshperspect.a000034277361920066092Open DOISearch in Google Scholar

69. Zhang H, Sun SC. NF‑κB in inflammation and renal diseases. Cell Biosci. 2015;5:63. doi: 10.1186/s13578-015-0056-4.10.1186/s13578-015-0056-4464771026579219Open DOISearch in Google Scholar

70. Kleniewska P, Piechota-polanczyk A, Michalski L, et al. Influence of Block of NF-Kappa B Signaling Pathway on Oxidative Stress in the Liver Homogenates. Oxid Med Cell Longev. 2013;2013:308358. doi: 10.1155/2013/308358.10.1155/2013/308358361243923577221Open DOISearch in Google Scholar

71. Hajra L, Evans AI, Chen M, et al. The NF-κB signal transduction pathway in aortic endothelial cells is primed for activation in regions predisposed to atherosclerotic lesion formation. Proc Natl Acad Sci U S A. 2000;97:9052-9057.10.1073/pnas.97.16.90521682010922059Search in Google Scholar

72. Kanters E, Pasparakis M, Gijbels MJJ, et al. Inhibition of NF-κB activation in macrophages increases atherosclerosis in LDL receptor-deficient mice. J Clin Invest. 2003;112:1176-1185. doi: 10.1172/JCI18580.10.1172/JCI1858021348814561702Open DOISearch in Google Scholar

73. Yurdagul A, Sulzmaier FJ, Chen XL, et al. Oxidized LDL induces FAK-dependent RSK signaling to drive NF-κB activation and VCAM-1 expression. J Cell Sci. 2016;129:1580-1591. doi: 10.1242/jcs.182097.10.1242/jcs.182097485277126906414Open DOISearch in Google Scholar

74. Meng Y, Chen C, Liu Y, et al. Angiotensin II Regulates Dendritic Cells through Activation of NF-κB/p65, ERK1/2 and STAT1 Pathways. Cell Physiol Biochem. 2017;42:1550-1558. doi: 10.1159/000479272.10.1159/00047927228723692Open DOISearch in Google Scholar

75. Wang H, Wei Y, Zeng Y, et al. The association of polymorphisms of TLR4 and CD14 genes with susceptibility to sepsis in a Chinese population. BMC Med Genet. 2014;15:123. doi: 10.1186/s12881-014-0123-4.10.1186/s12881-014-0123-4441169625394369Open DOISearch in Google Scholar

76. Ye E, Steinle JJ. miR-146a Attenuates Inflammatory Pathways Mediated by TLR4/NF-κB and TNF-α to Protect Primary Human Retinal Microvascular Endothelial Cells Grown in High Glucose. Mediators of Inflammation. 2016;2016:3958453. https://doi.org/10.1155/2016/3958453.10.1155/2016/3958453477953926997759Open DOISearch in Google Scholar

eISSN:
2457-5518
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Medizin, Klinische Medizin, Allgemeinmedizin, Innere Medizin, Kardiologie, Intensivmedizin und Notfallmedizin, Radiologie