Uneingeschränkter Zugang

Tree canopy affects soil macrofauna spatial patterns on broad- and meso-scale levels in an Eastern European poplar-willow forest in the floodplain of the River Dnipro


Zitieren

Aiba, M., Takafumi, H., Hiura, T., 2012. Interspecific differences in determinants of plant species distribution and the relationships with functional traits. Journal of Ecology, 100: 950–957. https://doi.org/10.1111/j.1365-2745.2012.01959.x10.1111/j.1365-2745.2012.01959.xOpen DOISearch in Google Scholar

Andivia, E., Fernández, M., Alejano, R., Vázquez-Piqué, J., 2015. Tree patch distribution drives spatial heterogeneity of soil traits in cork oak woodlands. Annals of Forest Science, 72: 549–559. https://doi.org/10.1007/s13595-015-0475-810.1007/s13595-015-0475-8Open DOISearch in Google Scholar

Bahram, M., Kohout, P., Anslan, S., Harend, H., Abarenkov, K., Tedersoo, L., 2016. Stochastic distribution of small soil eukaryotes resulting from high dispersal and drift in a local environment. The ISME Journal, 10 (4): 885–896. https://doi.org/10.1038/ismej.2015.16410.1038/ismej.2015.164Open DOISearch in Google Scholar

Bardgett, R.D., van der Putten, W.H., 2014. Belowground biodiversity and ecosystem functioning. Nature, 515 (7528): 505–511. https://doi.org/10.1038/nature1385510.1038/13855Open DOISearch in Google Scholar

Barton, P. S., Cunningham, S.A., Manning, A.D., Gibb, H., Lindenmayer, D.B., Didham, R.K., 2013. The spatial scaling of beta diversity. Global Ecology and Biogeography, 22 (6): 639–647. https://doi.org/10.1111/geb.1203110.1111/geb.12031Open DOISearch in Google Scholar

Berg, M. P., Bengtsson, J., 2007. Spatial and temporal variation in food web composition. Oikos, 116: 1789–804. https://doi.org/10.1111/j.0030-1299.2007.15748.x10.1111/j.0030-1299.2007.15748.xOpen DOISearch in Google Scholar

Blanchet, F.G., Legendre, P., Borcard, D., 2008. Forward selection of explanatory variables. Ecology, 89 (9): 2623–2632. https://doi.org/10.1890/07-0986.110.1890/07-0986.1Open DOISearch in Google Scholar

Borcard, D., Legendre, P., 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling, 153: 51–68. https://doi.org/10.1016/S0304-3800(01)00501-410.1016/S0304-3800(01)00501-4Open DOISearch in Google Scholar

Bratton, S., 1976. Resource division in an understory herb community: responses to temporal and microtopographic gradients. The American Naturalist, 110 (974): 679–693. [cit. 2019-05-02]. www.jstor.org/stable/2459584.10.1086/283097Search in Google Scholar

Breshears, D., Rich, P., Barnes, F., Campbell, K., 1997. Overstory-imposed heterogeneity in solar radiation and soil moisture in a semiarid woodland. Ecological Applications, 7 (4): 1201–1215. https://doi.org/10.1890/1051-0761(1997)007[1201:OIHISR]2.0.CO;210.1890/1051-0761(1997)007[1201:OIHISR]2.0.CO;2Open DOISearch in Google Scholar

Buzuk, G. N., 2017. Phytoindication with ecological scales and regression analysis: environmental index. Bulletin of Pharmacy, 2 (76): 31–37.Search in Google Scholar

Callaham, Jr., M.A., Richter, Jr., D.D., Coleman, D.C., Hofmockel, M., 2006. Long-term land-use effects on soil invertebrate communities in Southern Piedmont soils, USA. European Journal of Soil Biology, 42 (1): S150–S156. https://doi.org/10.1016/j.ejsobi.2006.06.00110.1016/j.ejsobi.2006.06.001Open DOISearch in Google Scholar

Cesarz, S., Fahrenholz, N., Migge-Kleian, S., Platner, C., Schaefer, M., 2007. Earthworm communities in relation to tree diversity in a deciduous forest. European Journal of Soil Biology, 43 (1): S61–S67. https://doi.org/10.1016/j.ejsobi.2007.08.00310.1016/j.ejsobi.2007.08.003Open DOISearch in Google Scholar

Chang, L., Zeleny, D., Li, C., Chiu, S., Hsieh, C., 2013. Better environmental data may reverse conclusions about niche- and dispersal-based processes in community assembly. Ecology, 94: 2145–2151. https://doi.org/10.1890/12-2053.110.1890/12-2053.1Open DOISearch in Google Scholar

Chase, J.M., 2014. Spatial scale resolves the niche versus neutral theory debate. Journal of Vegetation Science, 25: 319–322. https://doi.org/10.1111/jvs.1215910.1111/jvs.12159Open DOISearch in Google Scholar

Chen, B., Wise, D.H., 1999. Bottom-up limitation of predaceous arthropods in a detritus-based terrestrial food web. Ecology, 80: 761–772. https://doi.org/10.1890/0012-9658(1999)080[0761:BULOPA]2.0.CO;210.1890/0012-9658(1999)080[0761:BULOPA]2.0.CO;2Open DOISearch in Google Scholar

Chudomelová, M., Zelený, D., Li, Ch.-F., 2017. Contrasting patterns of fine-scale herb layer species composition in temperate forests. Acta Oecologica, 80: 24–31. https://doi.org/10.1016/j.actao.2017.02.00310.1016/j.actao.2017.02.003Open DOISearch in Google Scholar

De Cáceres, M., Legendre, P., Valencia, R., Cao, M., Chang, L.W., Chuyong, G., Kenfack, D., 2012. The variation of tree beta diversity across a global network of forest plots. Global Ecology and Biogeography, 21 (12): 1191–1202. https://doi.org/10.1111/j.1466-8238.2012.00770.x10.1111/j.1466-8238.2012.00770.xOpen DOISearch in Google Scholar

Decaens, T., Dutoit, T., Alard, D., Lavelle, P., 1998. Factors influencing soil macrofaunal communities in post–pastoral successions of western France. Applied Soil Ecology, 9: 361–367. https://doi.org/10.1016/S0929-1393(98)00090-010.1016/S0929-1393(98)00090-0Open DOISearch in Google Scholar

Didukh, Y.P., 2011. The ecological scales for the species of Ukrainian flora and their use in synphytoindication. Kyiv: Phytosociocentre. 176 p.Search in Google Scholar

Dini-Andreote, F., Stegen, J.C., Van Elsas, J.D., Salles, J.F., 2015. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proceedings of the National Academy of Sciences of the United States of America, 112 (11): E1326–E1332. https://doi.org/10.1073/pnas.141426111210.1073/pnas.1414261112Open DOISearch in Google Scholar

Dray, S., Bauman, D., Blanchet, G., Borcard, D., Clappe, S., Guenard, G., Jombart, T., Larocque, G., Legendre, P., Madi, N., Wagner, H.H., 2018. adespatial: Multivariate Multiscale Spatial Analysis. R package version 0.3-2. https://CRAN.R-project.org/package=adespatialSearch in Google Scholar

Dumbrell, A. J., Nelson, M., Helgason, T., Dytham, C., Fitter, A.H., 2010. Relative roles of niche and neutral processes in structuring a soil microbial community. The ISME Journal, 4 (3): 337–345. https://doi.org/10.1038/ismej.2009.12210.1038/ismej.2009.122Open DOISearch in Google Scholar

Frouz, J., Prach, K., Pižl, V., Háněl, L., Starý, J., Tajovský, K., Materna, J., Balík, V., Kalčík, J., Řehounková, K., 2008. Interactions between soil development, vegetation and soil fauna during spontaneous succession in post mining sites. European Journal of Soil Biology, 44: 109–121. https://doi.org/10.1016/j.ejsobi.2007.09.00210.1016/j.ejsobi.2007.09.002Open DOISearch in Google Scholar

Ge, Z., Fang, S., Chen, H.Y.H., Zhu, R., Peng, S., Ruan, H., 2018. Soil aggregation and organic carbon dynamics in poplar plantations. Forests, 9 (9): 508. https://doi.org/10.3390/f909050810.3390/f9090508Open DOISearch in Google Scholar

Gholami, S., Sayad, E., Gebbers, R., Schirrmann, M ., Joschko, M., Timmer, J., 2016. Spatial analysis of riparian forest soil macrofauna and its relation to abiotic soil properties. Pedobiologia, 59 (1): 27–36. https://doi.org/10.1016/j.pedobi.2015.12.00310.1016/j.pedobi.2015.12.003Open DOISearch in Google Scholar

Gholami, S., Sheikhmohamadi, B., Sayad, E., 2017. Spatial relationship between soil macrofauna biodiversity and trees in Zagros forests, Iran. Catena, 159: 1–8. https://doi.org/10.1016/j.catena.2017.07.021.10.1016/j.catena.2017.07.021Open DOISearch in Google Scholar

Graefe. U., Beylich, A., 2003. Critical values of soil acidification for annelid species and the decomposer community. Newsletter on Enchytraeidae, 8: 51–55.Search in Google Scholar

Hanson, C.A., Fuhrman, J.A., Horner-Devine, M.C., Martiny, J.B., 2012. Beyond biogeographic patterns: Processes shaping the microbial landscape. Nature Reviews Microbiology, 10 (7): 497. https://doi.org/10.1038/nrmicro279510.1038/nrmicro279522580365Open DOISearch in Google Scholar

Hooper, D.U., Vitousek, P.M., 1997. The effects of plant composition and diversity on ecosystem processes. Science, 277: 1302–1305. doi: 10.1126/science.277.5330.130210.1126/.277.5330.1302Open DOISearch in Google Scholar

Hunter, M.D., Price, P.W., 1992. Playing chutes and ladders: heterogeneity and the relative roles of bottom-up and top-down forces in natural communities. Ecology, 73: 724–732. https://doi.org/10.2307/194015210.2307/1940152Open DOISearch in Google Scholar

Igondová, E., Majzlan, O., 2015. Assemblages of ground beetles (Carabidae, Coleoptera) in peatland habitat, surrounding dry pine forests and meadows. Folia Oecologica, 42: 21–28.Search in Google Scholar

Jimenez, J.J., Decaens, T., Rossi, J.P., 2006. Stability of the spatio-temporal distribution and niche overlap in neo-tropical earthworm assemblages. Acta Oecologica, 30: 299–311. https://doi.org/10.1016/j.actao.2006.06.00810.1016/j.actao.2006.06.008Open DOISearch in Google Scholar

Jiménez, J.J., Decaëns, T., Rossi, J.-P., 2012. Soil environmental heterogeneity allows spatial co–occurrence of competitor earthworm species in a gallery forest of the Colombian “Llanos”. Oikos, 121: 915–926. https://doi.org/10.1111/j.1600-0706.2012.20428.x10.1111/j.1600-0706.2012.20428.xOpen DOISearch in Google Scholar

Jones, M.M., Tuomisto, H., Clark, D.B., Olivas, P., 2006. Effects of mesoscale environmental heterogeneity and dispersal limitation on floristic variation in rainforest ferns. Journal of Ecology, 94: 181–195. https://doi.org/10.1111/j.1365-2745.2005.01071.x10.1111/j.1365-2745.2005.01071.xOpen DOISearch in Google Scholar

Karunaratne, S., Singh, B., Robinson, L., Campbell, C., Yao, H., Powell, J., 2015. Deterministic processes vary during community assembly for ecologically dissimilar taxa. Nature Communications, 6 (1): 1–10. https://doi.org/10.1038/ncomms944410.1038/ncomms9444Open DOISearch in Google Scholar

King, A. W., With, K. A., 2002. Dispersal success on spatially structured landscapes: when do spatial pattern and dispersal behavior really matter? Ecological Modelling, 147 (1): 23–39. https://doi.org/10.1016/S0304-3800(01)00400-8.10.1016/S0304-3800(01)00400-8Open DOISearch in Google Scholar

Krivolutsky, D.A., 1994. Pochvennaja fauna v jekologicheskom kontrole [Soil fauna in ecological control]. Moscow: Nauka. 240 p.Search in Google Scholar

Lavelle, P., Senapati, B., Barros, E., 2003. Soil macrofauna. In Schroth, G., Sinclair, F.L. (eds). Trees, crops and soil fertility: concepts and research methods. Wall-ingford: CAB International, 2003, p. 303–323.10.1079/9780851995939.0303Search in Google Scholar

Lazorík, M., Kula, E., 2015. Impact of weather and habitat on the occurrence of centipedes, millipedes and terrestrial isopods in mountain spruce forests. Folia Oecologica, 42: 103–112.Search in Google Scholar

Legendre, P., Borcard, D., Peres-Neto, P.R., 2005. Analyzing beta diversity: Partitioning the spatial variation of community composition data. Ecological Monographs, 75: 435–450. https://doi.org/10.1890/05-054910.1890/05-0549Open DOISearch in Google Scholar

Legendre, P., Gallagher, E.D., 2001. Ecologically meaningful transformations for ordination of species. Oecologia, 129 (2): 271–280. https://doi.org/10.1007/s00442010071610.1007/s00442010071628547606Open DOISearch in Google Scholar

Legendre, P., Legendre, L., 2012. Numerical ecology. Third English edition. Amsterdam, NL: Elsevier Science. 1006 p.Search in Google Scholar

Legendre, P., Mi, X., Ren, H., Ma, K., Yu, M., Sun, I.–F., He, F., 2009. Partitioning beta diversity in a subtropical broadleaved forest of China. Ecology, 90: 663–674. https://doi.org/10.1890/07-1880.110.1890/07-1880.119341137Open DOISearch in Google Scholar

Lososová, Z., Šmarda, P., Chytrý, M., Purschke, O., Pyšek, P., Sádlo, J., Tichý, L., Winter, M., 2015. Phylogenetic structure of plant species pools reflects habitat age on the geological time scale. Journal of Vegetation Science, 26: 1080–1089. https://doi:10.1111/jvs.1230810.1111/jvs.12308Open DOISearch in Google Scholar

Mathieu, J., Grimaldi, M., Jouquet, P., Rouland, C., Lavelle, P., Desjardins, T., Rossi, J. P., 2009. Spatial patterns of grasses influence soil macrofauna biodiversity in Amazonian pastures. Soil Biology & Biochemistry, 41: 586–593. https://doi:10.1016/j.soilbio.2008.12.02010.1016/j.soilbio.2008.12.020Open DOISearch in Google Scholar

Mathieu, J., Rossi, J.P., Grimaldi, M., Mora, P., Lavelle, P., Rouland, C., 2004. A multi-scale study of soil macrofauna biodiversity in Amazonian pastures. Biology and Fertility of Soils, 40: 300–305. https://doi.org/10.1007/s00374-004-0777-810.1007/s00374-004-0777-8Open DOISearch in Google Scholar

Mitchell, R.J., Campbell, C.D., Chapman, S.J., Osler, G.H.R., Vanbergen, A.J., Ross, L.C., Cameron, C.M., Cole, L., 2007. The cascading effects of birch on heather moorland: a test for the top-down control of an ecosystem engineer. Journal of Ecology, 95: 540–554. https://doi:10.1111/j.1365-2745.2007.01227.x10.1111/j.1365-2745.2007.01227.xOpen DOISearch in Google Scholar

Mölder, A., Bernhardt-Römermann, M., Schmidt, W., 2008. Herb-layer diversity in deciduous forests: raised by tree richness or beaten by beech? Forest Ecology and Management, 256 (3): 272–281. https://doi.org/10.1016/j.foreco.2008.04.01210.1016/j.foreco.2008.04.012Open DOISearch in Google Scholar

Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Wagner, H., 2018. Community Ecology Package. R package version 2.5-2. [cit.2019-04-03]. https://CRAN.R-project.org/package=veganSearch in Google Scholar

Peay, K.G., Garbelotto, M., Bruns, T.D., 2010. Evidence of dispersal limitation in soil microorganisms: Isolation reduces species richness on mycorrhizal tree islands. Ecology, 91 (12): 3631–3640. https://doi.org/10.1890/09-2237.110.1890/09-2237.1Open DOISearch in Google Scholar

Polláková, N., Šimanský, V., Jonczak, J., 2017. Characteristics of physical properties in soil profiles under selected introduced trees in the Nature Reserve Arboretum Mlyňany, Slovakia. Folia Oecologica, 44: 78–86. https://doi.org/10.1515/foecol-2017-001010.1515/foecol-2017-0010Open DOISearch in Google Scholar

Ponsard, S., Arditi, R., Jost, C., 2000. Assessing top-down and bottom-up control in a litter-based soil macroin-vertebrate food chain. Oikos, 89: 524–540. https://doi.org/10.1034/j.1600-0706.2000.890312.x10.1034/j.1600-0706.2000.890312.xOpen DOISearch in Google Scholar

Powell, J.R., Karunaratne, S., Campbell, C.D., Yao, H., Robinson, L., Singh, B.K., 2015. Deterministic processes vary during community assembly for ecologically dissimilar taxa. Nature Communications, 6: 8444. https://doi.org/10.1038/ncomms944410.1038/ncomms9444Open DOISearch in Google Scholar

Power, M. E., 1992. Top-down and bottom-up forces in food webs: do plants have primacy? Ecology, 73: 733–746. doi: 10.2307/194015310.2307/1940153Open DOISearch in Google Scholar

Rao, C.R., 1964. The use and interpretation of principal component analysis in applied research. Sankhyā: The Indian Journal of Statistics. Series A, 26: 329–358. [cit. 2019-04-19]. https://www.jstor.org/stable/25049339Search in Google Scholar

Saetre, P., 1999. Spatial patterns of ground vegetation, soil microbial biomass and activity in a mixed spruce-birch stand. Ecography, 22: 183–192. https://doi.org/10.1111/j.1600-0587.1999.tb00467.x10.1111/j.1600-0587.1999.tb00467.xOpen DOISearch in Google Scholar

Sağlam, M., Dengiz, O., 2017. Spatial variability of soil penetration resistance in an alluvial delta plain under different land uses in middle Black Sea Region of Turkey. Archives of Agronomy and Soil Science, 63 (1): 60–73. https://doi.org/10.1080/03650340.2016.117838610.1080/03650340.2016.1178386Open DOISearch in Google Scholar

Scheu, S., Schaefer, M., 1998. Bottom-up control of the soil macrofauna community in a beechwood on limestone: manipulation of food resources. Ecology, 79: 1573–1585. https://doi.org/10.1890/0012-9658(1998)079[1573:BUCOTS]2.0.CO;210.1890/0012-9658(1998)079[1573:BUCOTS]2.0.CO;2Open DOISearch in Google Scholar

Shaw, D.C., Bible, K., 1996. An overview of forest canopy ecosystem function with reference to urban riparian systems. Northwest Science, 70: 1–5.Search in Google Scholar

Stašiov, S., Svitok, M., 2014. The influence of stand density on the structure of centipede (Chilopoda) and millipede (Diplopoda) communities in the submountain beech forest. Folia Oecologica, 41: 195–201.Search in Google Scholar

Stegen, J.C., Lin, X., Fredrickson, J.K., Chen, X., Kennedy, D.W., Murray, C.J., Konopka, A., 2013. Quantifying community assembly processes and identifying features that impose them. The ISME Journal, 7 (11): 2069. https://doi.org/10.1038/ismej.2013.9310.1038/ismej.2013.93Open DOISearch in Google Scholar

Thoms, M. C., 2003. Floodplain-river ecosystems: lateral connections and the implications of human interference. Geomorphology, 56: 335–349. https://doi.org/10.1016/S0169-555X(03)00160-010.1016/S0169-555X(03)00160-0Open DOISearch in Google Scholar

Tian, G., Olimah, J.A., Adeoye, G.O., Kang, B.T., 2000. Regeneration of earthworm populations in a degraded soil by natural and planted fallows under humid tropical conditions. Soil Science Society of America Journal, 64 (1): 222–228. doi: 10.2136/sssaj2000.641222x10.2136/sssaj2000.641222xOpen DOISearch in Google Scholar

Vadunina, A.F., Korchagina, S.A., 1986. Metody issledovaniya fizicheskikh svoystv pochv [Methods for research of physical properties of the soil]. Moscow: Agropromizdat. 416 p.Search in Google Scholar

Verhoef, H.A., Brussaard, L., 1990. Decomposition and nitrogen mineralisation in natural and agro-ecosystems: the contribution of soil animals. Biogeochemistry, 11: 175–211. https://doi.org/10.1007/BF0000449610.1007/BF00004496Open DOISearch in Google Scholar

Viketoft, M., 2013. Determinants of small-scale spatial patterns: importance of space, plants and abiotics for soil nematodes. Soil Biology and Biochemistry, 62: 92–98. https://doi.org/10.1016/j.soilbio.2013.03.01210.1016/j.soilbio.2013.03.012Open DOISearch in Google Scholar

Warren, M.W., Zou, X., 2002. Soil macrofauna and litter nutrients in three tropical tree plantations on a disturbed site in Puerto Rico. Forest Ecology and Management, 170: 161–171. https://doi.org/10.1016/S0378-1127(01)00770-810.1016/S0378-1127(01)00770-8Open DOISearch in Google Scholar

Weber, G.B., Gobat, J.M., 2006. Identification of faces models in alluvial soil formation: The case of a Swiss alpine floodplain. Geomorphology, 74: 181–195. http://dx.doi.org/10.1016/j.geomorph.2005.07.01610.1016/j.geomorph.2005.07.016Open DOISearch in Google Scholar

Westhoff, V., van der Maarel, E., 1978. The Braun-Blanquet approach. In Whittaker, R.H. (eds). Classification of plant communities. The Hague: Junk, p. 289–399.10.1007/978-94-009-9183-5_9Search in Google Scholar

Zadorozhnaya, G.A., Andrusevych, K.V., Zhukov, O.V., 2018. Soil heterogeneity after recultivation: ecological aspect. Folia Oecologica, 45: 46–52. https://doi.org/10.2478/foecol-2018-000510.2478/foecol-2018-0005Open DOISearch in Google Scholar

Zhukov, O., Kunah, O., Dubinina, Y., Novikova, V., 2018a. The role of edaphic, vegetational and spatial factors in structuring soil animal communities in a floodplain forest of the Dnipro river. Folia Oecologica, 45: 8–23. https://doi.org/10.2478/foecol-2018-000210.2478/foecol-2018-0002Open DOISearch in Google Scholar

Zhukov, O., Kunah, O., Dubinina, Y., Novikova, V., 2018b. The role of edaphic and vegetation factors in structuring beta diversity of the soil macrofauna community of the Dnipro river arena terrace. Ekológia (Bratislava), 37 (3): 301–327. https://doi.org/10.2478/eko-2018-002310.2478/eko-2018-0023Open DOISearch in Google Scholar

eISSN:
1338-7014
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Botanik, Zoologie, Ökologie, andere