Zitieren

[1] A. Baczmański, “Stress fields in polycrystalline materials studied using diffraction and self-consistent modeling,” postdoctoral dissertation, AGH-University of Science and Technology, Kraków, 2005.Search in Google Scholar

[2] A. Baczmański and C. Braham, “Elastoplastic properties of duplex steel determined using neutron diffraction and self-consistent model,” Acta Materialia, vol. 52, no. 5, pp. 1133–1142, Mar. 2004.Search in Google Scholar

[3] E. Gadalińska, “Micromechanical properties and stresses in two-phase poly-crystalline materials studied using diffraction and self-consistent model,” Doctoral Thesis, AGH - University of Science and Technology, Kraków, 2018.Search in Google Scholar

[4] A. Maciejny, “Mechanizm umocnienia kompozytów,” Krzepnięcie metali i stopów. Krystalizacja i własności kompozytów odlewanych., vol. 7, pp. 335–353, 1984.Search in Google Scholar

[5] R. J. McElroy and Z. C. Szkopiak, “Dislocation–Substructure–Strengthening and Mechanical–Thermal Treatment of Metals,” International Metallurgical Reviews, vol. 17, no. 1, pp. 175–202, Jan. 1972.10.1179/imtlr.1972.17.1.175Search in Google Scholar

[6] M. Rozmus-Górnikowska, “Umocnienie wydzieleniowe stopu Al z Cu +umocnienie stali,” Kraków.Search in Google Scholar

[7] T. W. Clyne and P. J. Withers, An Introduction to Metal Matrix Composites. Cambridge University Press, 1993.10.1017/CBO9780511623080Search in Google Scholar

[8] R. J. Arsenault and N. Shi, “Dislocation generation due to differences between the coefficients of thermal expansion,” Materials Science and Engineering, vol. 81, pp. 175–187, Aug. 1986.10.1016/0025-5416(86)90261-2Search in Google Scholar

[9] R. J. Arsenault, L. Wang, and C. R. Feng, “Strengthening of composites due to microstructural changes in the matrix,” Acta Metallurgica et Materialia, vol. 39, no. 1, pp. 47–57, Jan. 1991.10.1016/0956-7151(91)90327-WSearch in Google Scholar

[10] S. B. Prabu, L. Karunamoorthy, S. Kathiresan, and B. Mohan, “Influence of stirring speed and stirring time on distribution of particles in cast metal matrix composite,” Journal of Materials Processing Technology, vol. 171, no. 2, pp. 268–273, Jan. 2006.10.1016/j.jmatprotec.2005.06.071Search in Google Scholar

[11] K. Suryanarayanan, R. Praveen, and S. Raghuraman, “Silicon carbide reinforced aluminium metal matrix composites for aerospace applications: a literature review,” International Journal of Innovative Research in Science, Engineering and Technology, vol. 2, no. 11, pp. 6336–6344, 2013.Search in Google Scholar

[12] S. H. Avner, Introduction to physical metallurgy. New York: McGraw-Hill, 1964.Search in Google Scholar

[13] Y. Lakhtin and N. Weinstein, Engineering physical metallurgy. University Press of the Pacific, 2000.Search in Google Scholar

[14] M. M. Boopathi, K. P. Arulshri, and N. Iyandurai, “Evaluation of mechanical properties of aluminium alloy 2024 reinforced with silicon carbide and fly ash hybrid metal matrix composites,” American Journal of Applied Sciences, vol. 10, no. 3, pp. 219–229, 2013.10.3844/ajassp.2013.219.229Search in Google Scholar

[15] S. V. S. Narayana Murty, B. Nageswara Rao, and B. P. Kashyap, “On the hot working characteristics of 6061Al–SiC and 6061–Al2O3 particulate reinforced metal matrix composites,” Composites Science and Technology, vol. 63, no. 1, pp. 119–135, Jan. 2003.10.1016/S0266-3538(02)00197-5Search in Google Scholar

[16] M. E. Fitzpatrick, “A study of the effects of a quench residual stress field on fatigue in an Al/SiCp metal matrix composite,” University of Cambridge, 1995.Search in Google Scholar

[17] F. Xu, J. Zhang, Y. Deng, and X. Zhang, “Precipitation orientation effect of 2124 aluminum alloy in creep aging,” Transactions of Nonferrous Metals Society of China, vol. 24, no. 7, pp. 2067–2071, Jul. 2014.Search in Google Scholar

eISSN:
2300-7591
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
Volume Open
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere