Uneingeschränkter Zugang

Additive Allometric Models of Single-Tree Biomass of Betula Sp. as a Basis of Regional Taxation Standards for Eurasia


Zitieren

[1] BASKERVILLE, G. L.: Use of logarithmic regression in the estimation of plant biomass. Canadian Journal of Forest Research, Vol. 2, 1972, pp. 49 - 53.10.1139/x72-009Search in Google Scholar

[2] BI, H. – MURPHY, S. – VOLKOVA, L. – WESTON, CH. – FAIRMAN, T. – LI, Y. – LAW, R. – NORRIS, J. - LEI X. – CACCAMO, G.: Additive biomass equations based on complete weighing of sample trees for open eucalypt forest species in south-eastern Australia. Forest Ecology and Management, Vol. 349, 2015, pp. 106 - 121, http://dx.doi.org/10.1016/j.foreco.2015.03.007.10.1016/j.foreco.2015.03.007Open DOISearch in Google Scholar

[3] BI, H. – TURNER, J. – LAMBERT, M. J.: Additive biomass equations for native eucalypt forest trees of temperate Australia. Trees, Vol. 18, 2004, pp. 467 - 479.10.1007/s00468-004-0333-zSearch in Google Scholar

[4] CARVALHO, J. P. – PARRESOL, B. R.: Additivity in tree biomass components of Pyrenean oak (Quercus pyrenaica Willd). Forest Ecology and Management, Vol. 179, 2003, pp. 269 - 276.10.1016/S0378-1127(02)00549-2Search in Google Scholar

[5] CASE, B. S. – HALL, R. J.: Assessing prediction errors of generalized tree biomass and volume equations for the boreal forest region of west-central Canada. Canadian Journal of Forest Research, Vol. 38, 2008, pp. 878 - 889.10.1139/x07-212Search in Google Scholar

[6] CROW, T. R.: Comparing biomass regressions by site and stand age for red maple. Canadian Journal of Forest Research, Vol. 13, 1983, pp. 283 - 288.10.1139/x83-040Search in Google Scholar

[7] CROWTHER, T. W. – GLICK, H. B. [...] – BRADFORD, M. A.: Mapping tree density at a global scale. Nature, Vol. 525, 2015, pp. 201 - 205, DOI: 10.1038/nature14967.10.1038/14967Open DOISearch in Google Scholar

[8] CUNIA, T. – BRIGGS, R. D.: Forcing additivity of biomass tables: some empirical results. Canadian Journal of Forest Research, Vol. 14, 1984, pp. 376 - 384.10.1139/x84-067Search in Google Scholar

[9] DARYAEI, A. – SOHRABI, H.: Additive biomass equations for small diameter trees of temperate mixed deciduous forests. Scandinavian Journal of Forest Research, Vol. 31, No. 4, 2015, pp. 394-398.10.1080/02827581.2015.1089932Search in Google Scholar

[10] DONG, L. – ZHANG, L. – LI, F.: A three-step proportional weighting system of nonlinear biomass equations. Forest Science, Vol. 61, No. 1, 2015b, pp. 35 - 45.10.5849/forsci.13-193Search in Google Scholar

[11] DONG, L. – ZHANG, L. – LI, F.: Developing additive systems of biomass equations for nine hardwood species in Northeast China. Trees, Vol. 29, No. 4, 2015a, pp. 1149 - 1163, https://doi.org/10.1007/s00468-015-1196-1.10.1007/s00468-015-1196-1Search in Google Scholar

[12] DONG, L. – ZHANG, L. – LI, F.: Developing two additive biomass equations for three coniferous plantation species in Northeast China. Forests, Vol. 7, No. 7, 2016, pp. 130 - 136, DOI: 10.3390/f7070136.10.3390/f7070136Open DOISearch in Google Scholar

[13] FEHRMANN, L. – LEHTONEN, A. – KLEINN, C. – TOMPPO, R.: Comparison of linear and mixed-effect regression models and a k-nearest neighbour approach for estimation of single tree biomass. Canadian Journal of Forest Research, Vol. 38, 2008, pp. 1 - 9.10.1139/X07-119Search in Google Scholar

[14] FU, L. – SHARMA, R. P. – HAO, K. – TANG, S.: A generalized interregional nonlinear mixed-effects crown width model for Prince Rupprecht larch in northern China. Forest Ecology and Management, Vol. 389, 2017, pp. 364 - 373.10.1016/j.foreco.2016.12.034Search in Google Scholar

[15] FU, L. – SUN, H. – SHARMA, R. P. – LEI, Y. – ZHANG, H. – TANG, S.: Nonlinear mixed-effects crown width models for individual trees of Chinese fir (Cunninghamia lanceolata) in south-central China. Forest Ecology and Management, Vol. 302, 2013, pp. 210 - 220.10.1016/j.foreco.2013.03.036Search in Google Scholar

[16] FU, L. Y. – ZENG, W. S. – TANG, S. Z. – SHARMA, R. P. – LI, H. K.: Using linear mixed model and dummy variable model approaches to construct compatible single-tree biomass equations at different scales – A case study for Masson pine in Southern China. Journal of Forest Science, Vol. 58, No. 3, 2012, pp. 101 - 115.10.17221/69/2011-JFSSearch in Google Scholar

[17] JACOBS, M. W. – CUNIA, T.: Use of dummy variables to harmonize tree biomass tables. Canadian Journal of Forest Research, Vol. 10, No. 4, 1980, pp. 483 - 490.10.1139/x80-079Search in Google Scholar

[18] LI, C. M. – ZHANG, H. R.: Modelling dominant height for Chinese fir plantation using a non-linear mixed-effects modelling approach. Scientia Silvae Sinicae, Vol. 46, 2010, pp. 89 - 95.Search in Google Scholar

[19] LI, L. X. – HAO, Y. H. – ZHANG, Y.: The application of dummy variable in statistical analysis. The Journal of Mathematical Medicine, Vol. 19, 2006, pp. 51 - 52.Search in Google Scholar

[20] LIANG, J. – CROWTHER, T. W. – [...] – REICH, P. B.: Positive biodiversity-productivity relationship predominant in global forests. Science, Vol. 354, No. 6309, 2016, pp. 196 - 208, DOI: 10.1126/science.aaf8957.10.1126/.aaf8957Open DOISearch in Google Scholar

[21] PARRESOL, B. R.: Additivity of nonlinear biomass equations. Canadian Journal of Forest Research, Vol. 31, No. 5, 2001, pp. 865 - 878, https://doi.org/10.1139/x00-202.10.1139/x00-202Open DOISearch in Google Scholar

[22] PASTOR, J. – ABER, J. – MELILLO, J.: Biomass prediction using generalized allometric regressions for some northeast tree species. Forest Ecology and Management, Vol. 7, 1984, pp. 265 - 274, DOI: 10.1016/0378-1127(84)90003-3.10.1016/0378-1127(84)90003-3Open DOISearch in Google Scholar

[23] POORTER, H. – JAGODZINSKI, A. M. - RUIZ-PEINADO, R. – KUYAH, S. – LUO, Y. – OLEKSYN, J. – USOLTSEV, V. A. – BUCKLEY, T. N. – REICH, P. B. – SACK, L.: How does biomass allocation change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytologist, Vol. 208, No 3, 2015, pp. 736 - 749, DOI:10.1111/nph.13571.10.1111/nph.13571Open DOISearch in Google Scholar

[24] REED, D. D. – GREEN, E. J.: A method of forcing additivity of biomass tables when using nonlinear models. Canadian Journal of Forest Research, Vol. 15, 1985, pp. 1184 - 1187.10.1139/x85-193Search in Google Scholar

[25] RUTISHAUSER, E. - NOOR’AN, F. – LAUMONIER, Y. – HALPERIN, J. - RUFI’IE HERGOUALCH, K. – VERCHOT, L.: Generic allometric models including height best estimate forest biomass and carbon stocks in Indonesia. Forest Ecology and Management, Vol, 307, 2013, pp. 219 - 225.10.1016/j.foreco.2013.07.013Search in Google Scholar

[26] SCHENK, H. J. – JACKSON, R. B.: The global biogeography of roots. Ecological Monographs, Vol. 72, No. 3, 2002, pp. 311 - 328.10.1890/0012-9615(2002)072[0311:TGBOR]2.0.CO;2Search in Google Scholar

[27] SCHMITT, M. D. C. – GRIGAL, D. F.: Generalized biomass estimation equations for Betula papyrifera Marsh. Canadian Journal of Forest Research, Vol. 11, 1981, pp. 837 - 840.10.1139/x81-122Search in Google Scholar

[28] STANKOVA, T. – GYULEVA, V. – TSVETKOV, I. – POPOV, E. – VELINOVA, K. – VELIZAROVA, E. – DIMITROV, D. N. – HRISTOVA, H. – KALMUKOV, K. – DIMITROVA, P. – GLUSHKOVA, M. – ANDONOVA, E. – GEORGIEV, G. P. – KALAYDZHIEV, I. – TSAKOV, H.: Aboveground dendromass allometry of hybrid black poplars for energy crops. Annals of Forest Research, Vol. 59, No. 1, 2016, pp. 61 - 74.10.15287/afr.2016.552Search in Google Scholar

[29] STAS, S. M. – RUTISHAUSER, E. – CHAVE, J. – ANTEN, N. P. R. – LAUMONIER, Y.: Estimating the aboveground biomass in an old secondary forest on limestone in the Moluccas, Indonesia: Comparing locally developed versus existing allometric models. Forest Ecology and Management, Vol. 389, 2017, pp. 27 - 34.10.1016/j.foreco.2016.12.010Search in Google Scholar

[30] TANG, S. – ZHANG, H. – XU, H.: Study on establish and estimate method of compatible biomass model. Scientia Silvae Sinica, Vol. 36, 2000, pp. 19 - 27 (in Chinese with English abstract).Search in Google Scholar

[31] TANG, S. Z. – LANG, K. J. – LI, H. K.: Statistics and Computation of Biomathematical Models (ForStat Course). Beijing, Science Press, 2008, pp. 115 - 261.Search in Google Scholar

[32] TRITTON, L. M. – HORNBECK, J. W.: Biomass estimation for northeastern forests. Bulletin of the Ecological Society of America, Vol. 62, 1981, pp. 106 - 107.Search in Google Scholar

[33] USOLTSEV, V..: Compiling forest biomass data banks. Yekaterinburg, Ural Branch of RAS, 1998, p. 541, http://elar.usfeu.ru/handle/123456789/3224.Search in Google Scholar

[34] USOLTSEV, V. A.: Single-tree biomass of forest-forming species in Eurasia: database, climate-related geography, weight tables. Yekaterinburg: Ural State Forest Engineering University, 2016a, 336., http://elar.usfeu.ru/handle/123456789/5696.Search in Google Scholar

[35] USOLTSEV, V. A.: Single-tree biomass data for remote sensing and ground measuring of Eurasian forests. Yekaterinburg: Ural State Forest Engineering University, 2016b, http://elar.usfeu.ru/handle/123456789/6103, (CD-version in English and Russian).Search in Google Scholar

[36] USOLTSEV, V..: On additive models of tree biomass: some uncertainties and the attempt of their analytical review. Èko-potencial, Vol. 2, No. 18, 2017, pp. 23 - 46, http://elar.usfeu.ru/handle/123456789/6550.Search in Google Scholar

[37] USOLTSEV, V. A. – KOLTUNOVA, A. I. – KAJIMOTO, T. – OSAWA, A. – KOIKE, T.: Geographical gradients of annual biomass production from larch forests in Northern Eurasia. Eurasian Journal of Forest Research, Vol. 5, 2002, pp. 55 - 62.Search in Google Scholar

[38] VIEILLEDENT, G. – VAUDRY, R. – ANDRIAMANOHISOA, S. F. D. – RAKOTONARIVO, O. S. – RANDRIANASOLO, Z. H. – RAZAFINDRABE, H. N. - BIDAUD RAKOTOARIVONY, C. – EBELING, J. – RASAMOELINA, M.: A universal approach to estimate biomass and carbon stock in tropical forests using generic allometric models. Ecological Applications, Vol. 22, No. 2, 2012, pp. 572 - 583.10.1890/11-0039.1Search in Google Scholar

[39] WANG, M. – BORDERS, B. E. – ZHAO, D.: An empirical comparison of two subject-specific approaches to dominant heights modelling: The dummy variable method and the mixed model method. Forest Ecology and Management, Vol. 255, 2008, pp. 2659 - 2669.10.1016/j.foreco.2008.01.030Search in Google Scholar

[40] ZENG, W. S.: Using nonlinear mixed model and dummy variable model approaches to construct origin-based single tree biomass equations. Trees, Vol. 29, No. 1, 2015, pp. 275 - 283.10.1007/s00468-014-1112-0Search in Google Scholar

[41] ZENG, W. S. – TANG, S. Z. – XIA, Z. S. – ZHU, S. – LUO, H. Z.: Using linear mixed model and dummy variable model approaches to construct generalized single-tree biomass equations in Guizhou. Forest Research, Vol. 24, No. 3, 2011, pp. 285 - 291.Search in Google Scholar

[42] ZIANIS, D. – MENCUCCINI, M.: Aboveground biomass relationships for beech (Fagus moesiaca Cz.) trees in Vermio Mountain, Northern Greece, and generalized equations for Fagus sp. Annals of Forest Science, Vol. 60, 2003, pp. 439 - 448, DOI:10.1051/forest:2003036.10.1051/forest:2003036Open DOISearch in Google Scholar

eISSN:
2199-6512
ISSN:
1336-5835
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Wirtschaftswissenschaften, Volkswirtschaft, Wirtschaftstheorie, -systeme und -strukturen, Betriebswirtschaft, Branchen, Umweltmanagement