Zitieren

Skogsberg J, Kannisto K, Roshani L, Gagné E, Hamsten A, Larsson C, et al. Characterization of the human peroxisome proliferator activated receptor δ gene and its expression. Int J Mol Med. 2000; 6(1): 73-81.SkogsbergJKannistoKRoshaniLGagnéEHamstenALarssonCCharacterization of the human peroxisome proliferator activated receptor δ gene and its expressionInt J Mol Med200061738110.3892/ijmm.6.1.7310851270Search in Google Scholar

Neels JG, Grimaldi PA. Physiological functions of peroxisome proliferator-activated receptor β. Physiol Rev. 2014; 94(3): 795-858.NeelsJGGrimaldiPAPhysiological functions of peroxisome proliferator-activated receptor βPhysiol Rev201494379585810.1152/physrev.00027.201324987006Search in Google Scholar

Braissant O, Foufelle F, Scotto C, Dauça M, Wahli W. Differential expression of peroxisome proliferator-activated receptors (PPARs): Tissue distribution of PPAR-α, -β, and -γ in the adult rat. Endocrinology. 1996; 137(1): 354-366.BraissantOFoufelleFScottoCDauçaMWahliWDifferential expression of peroxisome proliferator-activated receptors (PPARs): Tissue distribution of PPAR-α, -β, and -γ in the adult ratEndocrinology1996137135436610.1210/endo.137.1.85366368536636Search in Google Scholar

Vrins CLJ, van der Velde AE, van den Oever K, Levels JHM, Huet S, Elferink RPJO, et al. Peroxisome proliferator-activated receptor δ activation leads to increased transintestinal cholesterol efflux. J Lipid Res. 2009; 50(10): 2046-2054.VrinsCLJvander Velde AEvanden Oever KLevelsJHMHuetSElferinkRPJOPeroxisome proliferator-activated receptor δ activation leads to increased transintestinal cholesterol effluxJ Lipid Res200950102046205410.1194/jlr.M800579-JLR200273975419439761Search in Google Scholar

Girroir EE, Hollingshead HE, He P. Quantitative expression patterns of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) protein in mice. 2009; 371(3): 456-461.GirroirEEHollingsheadHEHePQuantitative expression patterns of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) protein in mice2009371345646110.1016/j.bbrc.2008.04.086258683618442472Search in Google Scholar

Tumova J, Malisova L, Andel M, Trnka J. Protective effect of unsaturated fatty acids on palmitic acid induced toxicity in skeletal muscle cells is not mediated by PPARδ activation. Lipids. 2015; 50(10): 955-964.TumovaJMalisovaLAndelMTrnkaJProtective effect of unsaturated fatty acids on palmitic acid induced toxicity in skeletal muscle cells is not mediated by PPARδ activationLipids2015501095596410.1007/s11745-015-4058-026255030Search in Google Scholar

Briand F. Both the peroxisome proliferator-activated receptor (PPAR) δ agonist, GW0742, and ezetimibe promote reverse cholesterol transport in mice by reducing intestinal re-absorption of HDL-derived cholesterol. 2010; 2(2): 127-133.BriandFBoth the peroxisome proliferator-activated receptor (PPAR) δ agonist, GW0742, and ezetimibe promote reverse cholesterol transport in mice by reducing intestinal re-absorption of HDL-derived cholesterol20102212713310.1111/j.1752-8062.2009.00098.x282328920169010Search in Google Scholar

van der Veen JN, Kruit JK, Havinga R, Baller JFW, Chimini G, Lestavel S, et al. Reduced cholesterol absorption upon PPARδ activation coincides with decreased intestinal expression of NPC1L1. J Lipid Res. 2005; 46(3): 526-534.vander Veen JNKruitJKHavingaRBallerJFWChiminiGLestavelSReduced cholesterol absorption upon PPARδ activation coincides with decreased intestinal expression of NPC1L1J Lipid Res200546352653410.1194/jlr.M400400-JLR20015604518Search in Google Scholar

Muoio DM, MacLean PS, Lang DB, Li S, Houmard JA, Way JM, et al. Fatty acid homeostasis and induction of lipid regulatory genes in skeletal muscles of peroxisome proliferator-activated receptor (PPAR) α knock-out mice. J Biol Chem. 2002; 277(29): 26089-26097.MuoioDMMacLeanPSLangDBLiSHoumardJAWayJMFatty acid homeostasis and induction of lipid regulatory genes in skeletal muscles of peroxisome proliferator-activated receptor (PPAR) α knock-out miceJ Biol Chem200227729260892609710.1074/jbc.M20399720012118038Search in Google Scholar

Grimaldi PA. Regulatory role of peroxisome proliferator-activated receptor δ (PPARδ) in muscle metabolism. A new target for metabolic syndrome treatment? Biochimie. 2005; 87(1): 5-8.GrimaldiPARegulatory role of peroxisome proliferator-activated receptor δ (PPARδ) in muscle metabolismA new target for metabolic syndrome treatment? Biochimie20058715810.1016/j.biochi.2004.11.00915733729Search in Google Scholar

Ehrenborg EW, Krook A. Regulation of skeletal muscle physiology and metabolism by peroxisome prolif-erator-activated receptor. Pharmacol Rev. 2009; 61(3): 373-393.EhrenborgEWKrookARegulation of skeletal muscle physiology and metabolism by peroxisome prolif-erator-activated receptorPharmacol Rev200961337339310.1124/pr.109.001560Search in Google Scholar

Holst D, Luquet S, Nogueira V, Kristiansen K, Leverve X, Grimaldi PA. Nutritional regulation and role of peroxisome proliferator-activated receptor δ in fatty acid catabolism in skeletal muscle. Biochim Biophys Acta. 2003; 1633(1): 43-50.HolstDLuquetSNogueiraVKristiansenKLeverveXGrimaldiPANutritional regulation and role of peroxisome proliferator-activated receptor δ in fatty acid catabolism in skeletal muscleBiochim Biophys Acta200316331435010.1016/S1388-1981(03)00071-4Search in Google Scholar

Manickam R, Wahli W. Roles of peroxisome proliferator-activated receptor β/δ in skeletal muscle physiology. Biochimie. 2016; 136: 42-48.ManickamRWahliWRoles of peroxisome proliferator-activated receptor β/δ in skeletal muscle physiologyBiochimie2016136424810.1016/j.biochi.2016.11.01027916646Search in Google Scholar

Nahlé Z, Hsieh M, Pietka T, Coburn CT, Grimaldi PA, Zhang MQ, et al. CD36-dependent regulation of muscle FoxO1 and PDK4 in the PPARβ/δ-mediated adaptation to metabolic stress. J Biol Chem. 2008; 283(21): 14317-14326.NahléZHsiehMPietkaTCoburnCTGrimaldiPAZhangMQCD36-dependent regulation of muscle FoxO1 and PDK4 in the PPARβ/δ-mediated adaptation to metabolic stressJ Biol Chem200828321143171432610.1074/jbc.M706478200238693618308721Search in Google Scholar

Luquet S, Lopez-Soriano J, Holst D, Fredenrich A, Melki J, Rassoulzadegan M, et al. Peroxisome proliferator-activated receptor δ controls muscle development and oxidative capability. FASEB J. 2003; 17(15): 2299-2301.LuquetSLopez-SorianoJHolstDFredenrichAMelkiJRassoulzadeganMPeroxisome proliferator-activated receptor δ controls muscle development and oxidative capabilityFASEB J200317152299230110.1096/fj.03-0269fje14525942Search in Google Scholar

Wang YX, Zhang CL, Yu RT, Cho HK, Nelson MC, Bayuga-Ocampo CR, et al. Regulation of muscle fiber type and running endurance by PPARδ. PLoS Biol. 2004; 2(10): e294.WangYXZhangCLYuRTChoHKNelsonMCBayuga-OcampoCRRegulation of muscle fiber type and running endurance by PPARδPLoS Biol2004210e29410.1371/journal.pbio.002029450941015328533Search in Google Scholar

Tanaka T, Yamamoto J, Iwasaki S, Asaba H, Hamura H, Ikeda Y, et al. Activation of peroxisome prolif-erator-activated receptor δ induces fatty acid β-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc Natl Acad Sci USA. 2003; 100(26): 15924-15929.TanakaTYamamotoJIwasakiSAsabaHHamuraHIkedaYActivation of peroxisome prolif-erator-activated receptor δ induces fatty acid β-oxidation in skeletal muscle and attenuates metabolic syndromeProc Natl Acad Sci USA200310026159241592910.1073/pnas.030698110030766914676330Search in Google Scholar

Maciejewska-Karłowska A. Polymorphic variants of the PPAR (peroxisome proliferator-activated receptor) genes: relevance for athletic performance. Trends Sport Sci. 2013; 1(20): 5-15.Maciejewska-KarłowskaAPolymorphic variants of the PPAR (peroxisome proliferator-activated receptor) genes: relevance for athletic performanceTrends Sport Sci2013120515Search in Google Scholar

Mahoney DJ, Parise G, Melov S, Safdar A, Tarnopolsky MA. Analysis of global mRNA expression in human skeletal muscle during recovery from endurance exercise. FASEB J. 2005;19(11):1498-1500.MahoneyDJPariseGMelovSSafdarATarnopolskyMAAnalysis of global mRNA expression in human skeletal muscle during recovery from endurance exerciseFASEB J200519111498150010.1096/fj.04-3149fje15985525Search in Google Scholar

Radzimiński Ł, Rompa P, Dargiewicz R, Ignatiuk W, Jastrzębski Z. An application of incremental running test results to train professional soccer players. An Application of Incremental Running Test Results to Train Professional Soccer Players. Baltic J Health Phys Act. 2010; 2(1): 67-74 (http://bjhpa.journalstube.com/view/abstract/id/10444).Radzimiński ŁRompa PDargiewiczRIgnatiukWJastrzębskiZAn application of incremental running test results to train professional soccer players. An Application of Incremental Running Test Results to Train Professional Soccer PlayersBaltic J Health Phys Act2010216774(http://bjhpa.journalstube.com/view/abstract/id/10444)10.2478/v10131-010-0007-8Search in Google Scholar

Desvergne B, Michalik L, Wahli W. Transcriptional regulation of metabolism. Physiol Rev. 2006; 86(2): 465-514.DesvergneBMichalikLWahliWTranscriptional regulation of metabolismPhysiol Rev200686246551410.1152/physrev.00025.200516601267Search in Google Scholar

Yessoufou A, Wahli W. Multifaceted roles of peroxisome proliferator-activated receptors (PPARs) at the cellular and whole organism levels. Swiss Med Wkly. 2010; 140: w13071.YessoufouAWahliWMultifaceted roles of peroxisome proliferator-activated receptors (PPARs) at the cellular and whole organism levelsSwiss Med Wkly2010140w1307110.4414/smw.2010.1307120842602Search in Google Scholar

Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013; 17(2): 162-184.EganBZierathJRExercise metabolism and the molecular regulation of skeletal muscle adaptationCell Metab201317216218410.1016/j.cmet.2012.12.01223395166Search in Google Scholar

Hawley JA, Hargreaves M, Joyner MJ, Zierath JR. Integrative biology of exercise. Cell. 2014; 159(4): 738-749.HawleyJAHargreavesMJoynerMJZierathJRIntegrative biology of exerciseCell2014159473874910.1016/j.cell.2014.10.02925417152Search in Google Scholar

Egan B, Hawley JA, Zierath JR. SnapShot: Exercise metabolism. Cell Metab. 2016; 24(2): 342-342.e1. doi: 10.1016/j.cmet.2016.07.013.EganBHawleyJAZierathJRSnapShot: Exercise metabolismCell Metab2016242342342e1. doi: 10.1016/j.cmet.2016.07.01310.1016/j.cmet.2016.07.01327508878Search in Google Scholar

Wahli W, Michalik L. PPARs at the crossroads of lipid signaling and inflammation. Trends Endocrinol Metab. 2012; 23(7): 351-363.WahliWMichalikLPPARs at the crossroads of lipid signaling and inflammationTrends Endocrinol Metab201223735136310.1016/j.tem.2012.05.00122704720Search in Google Scholar

Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ. Nuclear receptors and lipid physiology: Opening the X-files. Science. 2001; 294(5548): 1866-1870.ChawlaARepaJJEvansRMMangelsdorfDJNuclear receptors and lipid physiology: Opening the X-filesScience200129455481866187010.1126/science.294.5548.186611729302Search in Google Scholar

Perry CGR, Lally J, Holloway GP, Heigenhauser GJF, Bonen A, Spriet LL. Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. J Physiol. 2010; 588(23): 4795-4810.PerryCGRLallyJHollowayGPHeigenhauserGJFBonenASprietLLRepeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscleJ Physiol2010588234795481010.1113/jphysiol.2010.199448301014720921196Search in Google Scholar

Russell AP, Hesselink MK, Lo SK, Schrauwen P. Regulation of metabolic transcriptional co-activators and transcription factors with acute exercise. FASEB J. 2005; 19(8): 986-988.RussellAPHesselinkMKLoSKSchrauwenPRegulation of metabolic transcriptional co-activators and transcription factors with acute exerciseFASEB J200519898698810.1096/fj.04-3168fje15814608Search in Google Scholar

Erol A. Muscle-specific PPARβ/δ agonism may provide synergistic benefits with life style modifications. PPAR Res. 2007; 2007: 30578. doi: 10.1155/2007/30578.ErolAMuscle-specific PPARβ/δ agonism may provide synergistic benefits with life style modificationsPPAR Res2007200730578doi: 10.1155/2007/3057810.1155/2007/30578222004118274626Search in Google Scholar

Pérez-Schindler J, Svensson K, Vargas-Fernández E, Santos G, Wahli W, Handschin C. The coactivator PGC-1α regulates skeletal muscle oxidative metabolism independently of the nuclear receptor PPARβ/δ in sedentary mice fed a regular chow diet. Diabetologia. 2014; 57(11): 2405-2412.Pérez-SchindlerJSvenssonKVargas-FernándezESantosGWahliWHandschinCThe coactivator PGC-1α regulates skeletal muscle oxidative metabolism independently of the nuclear receptor PPARβ/δ in sedentary mice fed a regular chow dietDiabetologia201457112405241210.1007/s00125-014-3352-3465715425116175Search in Google Scholar

Dressel U, Allen TL, Pippal JB, Rohde PR, Lau P, Muscat GEO. The peroxisome proliferator-activated receptor β/δ agonist, GW501516, regulates the expression of genes involved in lipid catabolism and energy uncoupling in skeletal muscle cells. Mol Endocrinol. 2003; 17(12): 2477-2493.DresselUAllenTLPippalJBRohdePRLauPMuscatGEOThe peroxisome proliferator-activated receptor β/δ agonist, GW501516, regulates the expression of genes involved in lipid catabolism and energy uncoupling in skeletal muscle cellsMol Endocrinol200317122477249310.1210/me.2003-0151Search in Google Scholar

Wang YX, Lee CH, Tiep S, Yu RT, Ham J, Kang H, et al. Peroxisome-proliferator-activated receptor δ activates fat metabolism to prevent obesity. Cell. 2003; 113(2): 159-170.WangYXLeeCHTiepSYuRTHamJKangHPeroxisome-proliferator-activated receptor δ activates fat metabolism to prevent obesityCell2003113215917010.1016/S0092-8674(03)00269-1Search in Google Scholar

Moldoveanu AI, Shephard RJ, Shek PN. The cytokine response to physical activity and training. Sports Med. 2001; 31(2): 115-144.MoldoveanuAIShephardRJShekPNThe cytokine response to physical activity and trainingSports Med200131211514410.2165/00007256-200131020-00004710189111227979Search in Google Scholar

Baskin KK, Winders BR, Olson EN. Muscle as a “mediator” of systemic metabolism. Cell Metab. 2015; 21(2): 237-248.BaskinKKWindersBROlsonENMuscle as a “mediator” of systemic metabolismCell Metab201521223724810.1016/j.cmet.2014.12.021439802625651178Search in Google Scholar

Trejo-Gutierrez JF, Fletcher G. Impact of exercise on blood lipids and lipoproteins. J Clin Lipidol. 2007; 1(3): 175-181.Trejo-GutierrezJFFletcherGImpact of exercise on blood lipids and lipoproteinsJ Clin Lipidol20071317518110.1016/j.jacl.2007.05.00621291678Search in Google Scholar

Monda KL, Ballantyne CM, North KE. Longitudinal impact of physical activity on lipid profiles in middle-aged adults: The Atherosclerosis Risk in Communities Study. J Lipid Res. 2009; 50(8): 1685-1691.MondaKLBallantyneCMNorthKELongitudinal impact of physical activity on lipid profiles in middle-aged adults: The Atherosclerosis Risk in Communities StudyJ Lipid Res20095081685169110.1194/jlr.P900029-JLR200272405519346332Search in Google Scholar

Silva RC, Diniz Mde F, Alvim S, Vidigal PG, Fedeli LM, Barreto SM. Physical activity and lipid profile in the ELSA-Brasil study. Arq Bras Cardiol. 2016; 107(1): 10-19.SilvaRCDinizMde FAlvimSVidigalPGFedeliLMBarretoSMPhysical activity and lipid profile in the ELSA-Brasil studyArq Bras Cardiol20161071101910.5935/abc.20160091497695127355470Search in Google Scholar

Alderete TL, Gyllenhammer LE, Byrd-Williams CE, Spruijt-Metz D, Goran MI, Davis JN. Increasing physical activity decreases hepatic fat and metabolic risk factors. J Exerc Physiol Online. 2013; 15(2): 40-54.AldereteTLGyllenhammerLEByrd-WilliamsCESpruijt-MetzDGoranMIDavisJNIncreasing physical activity decreases hepatic fat and metabolic risk factorsJ Exerc Physiol Online20131524054Search in Google Scholar

Schrauwen P, Westerterp KR. The role of high-fat diets and physical activity in the regulation of body weight. Br J Nutr. 2000; 84(4): 417-427.SchrauwenPWesterterpKRThe role of high-fat diets and physical activity in the regulation of body weightBr J Nutr200084441742710.1017/S0007114500001720Search in Google Scholar

Cheng L, Ding G, Qin Q, Huang Y, Lewis W, He N, et al. Cardiomyocyte-restricted peroxisome proliferator-activated receptor-δ deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat Med. 2004; 10(11): 1245-1250.ChengLDingGQinQHuangYLewisWHeNCardiomyocyte-restricted peroxisome proliferator-activated receptor-δ deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathyNat Med200410111245125010.1038/nm111615475963Search in Google Scholar

eISSN:
1311-0160
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Medizin, Vorklinische Medizin, Grundlagenmedizin, andere