Zitieren

[1] H. Nakata, K. Yoshioka, T. Kamiya, H. Tsuga, K. Oyanagi, Functions of heteromeric association between adenosine and P2Y receptors, Journal of Molecular Neuroscience 26 (2005) 233–238. https://doi.org/10.1385/JMN:26:2-3:23310.1385/JMN:26:2-3:233 Search in Google Scholar

[2] V.L. Damaraju, S. Damaraju, J.D. Young, S.A. Baldwin, J. Mackey, M.B. Sawyer, C.E. Cass, Nucleoside anticancer drugs: The role of nucleoside transporters in resistance to cancer chemotherapy, Oncogene 22 (2003) 7524–7536. https://doi.org/10.1038/sj.onc.120695210.1038/sj.onc.1206952 Search in Google Scholar

[3] M.K. Kukhanova, Anti-HIV nucleoside drugs: A retrospective view into the future, Molecular Biology 46 (2012) 768–779. https://pubmed.ncbi.nlm.nih.gov/23350232/ Search in Google Scholar

[4] E.D. Clercq, G. Li, Approved antiviral drugs over the past 50 years, Clinical Microbiology Reviewes 29 (2016) 695–747. https://doi.org/10.1128/CMR.00102-1510.1128/CMR.00102-15 Search in Google Scholar

[5] E.D. Clercq, Antiviral drugs in current clinical use, Journal of Clinical Virology 30 (2004) 115–133. https://doi.org/10.1016/j.jcv.2004.02.00910.1016/j.jcv.2004.02.009 Search in Google Scholar

[6] L.P. Jordheim, D. Durantel, F. Zoulim, C. Dumontet, Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases, Nature Reviews Drug Discovery 12 (2013) 447–464. https://doi.org/10.1038/nrd401010.1038/nrd4010 Search in Google Scholar

[7] K. Juraj, T. Michal, P. Radek, H. Jan, D. Petr, H. Marián, H. Michal, Sugar modified pyrimido[4,5-b]indole nucleosides: synthesis and antiviral activity, Medicinal Chemistry Communications 8 (2017) 1856–1862. https://doi.org/10.1039/c7md00319f10.1039/C7MD00319F Search in Google Scholar

[8] L.K. Grove, X. Guo, S.H. Liu, Z. Gao, C.K. Chu, Y.C. Cheng, Anticancer activity of beta-L-dioxolane-cytidine, a novel nucleoside analogue with the unnatural L configuration, Comparative Study 55 (1995) 3008–3011. https://pubmed.ncbi.nlm.nih.gov/7606719/ Search in Google Scholar

[9] A.M. Mohamed, H.R. Al-Qalawi, W.A. El-Sayed, W.A. Arafa, M.S. Alhumaimess, A.K. Hassan, Anticancer activity of newly synthesized triazolopyridine derivatives and their nucleoside analogs, Acta Poloniae Pharmaceutica 72 (2015) 307–318. https://pubmed.ncbi.nlm.nih.gov/26642681/ Search in Google Scholar

[10] L. Vijaya, S.D. Damaraju, D.Y. James, A.B. Stephen, M. John, B.S. Michael, E.C. Carol, Nucleoside anticancer drugs: the role of nucleoside transporters in resistance to cancer chemotherapy, Oncogene 22 (2003) 7524–7536. https://doi.org/10.1038/sj.onc.120695210.1038/sj.onc.1206952 Search in Google Scholar

[11] S. Rachakonda, L. Cartee, Challenges in antimicrobial drug discovery and the potential of nucleoside antibiotics, Current Medicinal Chemistry 11 (2004) 775–793. https://doi.org/10.2174/092986704345577410.2174/0929867043455774 Search in Google Scholar

[12] G. Ronquist, F. Niklasson, Uridine, xanthine, and urate contents in human seminal plasma, Archives of Andrology 13 (1984) 63–70. https://doi.org/10.3109/0148501840898750110.3109/01485018408987501 Search in Google Scholar

[13] M. Itoh, D. Hagiwara, J. Notani, A simple and mild esterification method for carboxylic acids using sulfonate-type coupling reagents, Synthesis 1975 (1975) 456–458. https://doi.org/10.1055/s-1975-2380410.1055/s-1975-23804 Search in Google Scholar

[14] Y. Tsuda, E. Haque, Regioselective introduction of p-coumaroyl group to α-L-arabino-pyranosides. Total synthesis of inundoside-G and inundoside-D1, Chemical and Pharmaceutical Bulletin 31 (1983) 1437–1439. https://doi.org/10.1248/cpb.31.143710.1248/cpb.31.1437 Search in Google Scholar

[15] C. Andary, R. Wylde, C. Laffite, G. Privat, I. Winternitz, Structures of verbascoside and orobanchoside caffeic acid sugar esters from Orobanche rapumgenistae, Phytochemistry 21 (1982) 1123–1127. https://doi.org/10.1016/S0031-9422(00)82429-210.1016/S0031-9422(00)82429-2 Search in Google Scholar

[16] H. Ishii, M. Nakamura, S. Seo, K. Tori, T. Tozoyo, Y. Yoshimura, Isolation, characterization and nuclear magnetic spectra of new saponins from the roots of Bupleurum falcatum L, Chemical and Pharmaceutical Bulletin 28 (1980) 2367–2373. https://doi.org/10.1248/cpb.28.236710.1248/cpb.28.2367 Search in Google Scholar

[17] A.K.M.S. Kabir, P. Dutta, M. N. Anwar, Synthesis of some new derivatives of D-mannose, Chittagong University Journal of Science 29 (2005) 1–8. Search in Google Scholar

[18] A.F. El-Farargy, A.G. Amira, Synthesis of some purine nucleoside derivatives with expected biological activity, Current Organic Chemistry 13 (2009) 1842–1847. https://doi.org/10.2174/13852720978963048810.2174/138527209789630488 Search in Google Scholar

[19] Z. Li, S. Chen, N. Jiang, G. Cui, Synthesis of triazole nucleoside derivatives, Nucleoside Nucleotide Nucleic Acids 22 (2003) 419–435. https://doi.org/10.1081/NCN-12002203210.1081/NCN-12002203212885123 Search in Google Scholar

[20] S. K. Nermin, The synthesis of ribose and nucleoside derivatives, Madridge Journal of Novel Drug Research 2 (2018) 37–56. https://doi.org/10.18689/mjndr-100010710.18689/mjndr-1000107 Search in Google Scholar

[21] M.M. Ghorab, Z.H. Ismail, S.M.A. Gaward, A.A. Aziem, Antimicrobial activity of amino acid, imidazole and sulfonamide derivatives of pyrazolo[3,4-d]pyrimidine, Heteroatom Chemistry 15 (2004) 57–62. https://doi.org/10.1002/hc.1021210.1002/hc.10212 Search in Google Scholar

[22] R. Gupta, S. Paul, A.K. Gupta, P.L. Kachroo, S. Bani, Synthesis and biological activities of some substituted phenyl-3-(3-alkyl/aryl-5,6-dihydro-striazolo[3,4-b][1,3,4]thiazol-6-yl) indoles, Indian Journal of Chemistry 36 (1997) 707–710. Search in Google Scholar

[23] S.M.A. Kawsar, M.O. Faruk, M.S. Rahman, Y. Fujii, Y. Ozeki, Regioselective synthesis, characterization and antimicrobial activities of some new monosaccharide derivatives, Sciencia Pharmaceutica 82 (2014) 1–20. https://doi.org/10.3797/scipharm.1308-0310.3797/scipharm.1308-03395122224634838 Search in Google Scholar

[24] S M.A. Kawsar, A.A. Hamida, A.U. Sheikh, M.K. Hossain, A.C. Shagir, A.F.M. Sanaullah, M.A. Manchur, H. Imtiaj, Y. Ogawa, Y. Fujii, Y. Koide, Y. Ozeki, Chemically modified uridine molecules incorporating acyl residues to enhance antibacterial and cytotoxic activities, International Journal of Organic Chemistry 5 (2015) 232–245. https://doi.org/10.4236/ijoc.2015.5402310.4236/ijoc.2015.54023 Search in Google Scholar

[25] M. Uzzaman, M.N. Uddin, Optimization of structures, biochemical properties of ketorolac and its degradation products based on computational studies, DARU Journal of Pharmaceutical Science 27 (2019) 71–82. https://doi.org/10.1007/s40199-019-00243-w10.1007/s40199-019-00243-w659303530784007 Search in Google Scholar

[26] M. Uzzaman and M. J. Hoque, Physiochemical, molecular docking, and pharmacokinetic studies of Naproxen and modified derivatives based on DFT, International Journal of Scientific Research and Management 6 (2018) C-2018-12–19. https://doi.org/10.18535/ijsrm/v6i9.c0110.18535/ijsrm/v6i9.c01 Search in Google Scholar

[27] A.W. Bauer, W.M.M. Kirby, J.C. Sherris, M. Turck, Antibiotic susceptibility testing by a standardized single disk method, American Journal of Clinical Pathology 45 (1966) 493–496. https://pubmed.ncbi.nlm.nih.gov/5325707/10.1093/ajcp/45.4_ts.493 Search in Google Scholar

[28] D. Msterdam, Susceptibility testing of antimicrobials in liquid media, In Lorian, V., (ed.), Antibiotics in laboratory medicine, 5th ed. Williams, L., Wilkins, Philadelphia, PA, 2005 61, ISBN 0-7817-4983-2. Search in Google Scholar

[29] R.K. Grover, J.D. Moore, Toximetric studies of fungicides against the brown rot organisms, Sclerotinia fructicola and S. laxa, Phytopathology 52 (1962) 876–879. Search in Google Scholar

[30] W.A. Hunt, The effects of aliphatic alcohols on the biophysical and biochemical correlates of membrane function, Advances in Experimental Medicine and Biology 56 (1975) 195–210. https://doi.org/10.1007/978-1-4684-7529-6_910.1007/978-1-4684-7529-6_9167555 Search in Google Scholar

[31] Y.M. Kim, S. Farrah, R.H. Baney, Structure-antimicrobial activity relationship for silanols, a new class of disinfectants, compared with alcohols and phenols, International Journal of Antimicrobial Agents 29 (2007) 217–222. https://doi.org/10.1016/j.ijantimicag.2006.08.03610.1016/j.ijantimicag.2006.08.03617137754 Search in Google Scholar

[32] R.A. Gaussian M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, et al., Gaussian, Inc., Wallingford CT. 2009 Search in Google Scholar

[33] A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behaviour, Physical Review A 38 (1988) 3098–3100. https://doi.org/10.1103/physreva.38.309810.1103/PhysRevA.38.3098 Search in Google Scholar

[34] C. Lee, W. Yang, R.G. Parr, Development of the colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Reviews B 37 (1988) 785–789. https://doi.org/10.1103/physrevb.37.78510.1103/PhysRevB.37.785 Search in Google Scholar

[35] R. G. Pearson, Absolute electronegativity and hardness correlated with molecular orbital theory, Proceedings of the National Academy of Sciences 83 (1986) 8440–8441. https://doi.org/10.1073/pnas.83.22.844010.1073/pnas.83.22.844038694516578791 Search in Google Scholar

[36] M.J. Lucido, B.J. Orlando, A.J. Vecchio, M.G. Malkowski, Crystal structure of aspirin-acylated human cyclooxygenase-2: Insight into the formation of products with reversed stereochemistry, Biochemistry 55 (2016) 1226–1238. https://doi.org/10.1021/acs.biochem.5b0137810.1021/acs.biochem.5b01378477537626859324 Search in Google Scholar

[37] W.L. Delano, The PyMOL molecular graphics system. de-lano scientific, San Carlos, CA, USA, 2002. http://wwwpymolorg Search in Google Scholar

[38] N. Guex, M.C. Peitsch, SWISS-MODEL and the Swiss-Pdb Viewer: An environment for comparative protein modeling, Electrophoresis 18 (1997) 2714–2723. https://doi.org/10.1002/elps.115018150510.1002/elps.11501815059504803 Search in Google Scholar

[39] S. Dallakyan, A.J. Olson, Small-molecule library screening by docking with PyRx. In: J.E. Hempel, C.H. Williams, C.C. Hong, (eds.) Chemical biology: methods and protocols. Springer, New York, NY, 2015, 243–250. https://doi.org/10.1007/978-1-4939-2269-7_1910.1007/978-1-4939-2269-7_1925618350 Search in Google Scholar

[40] F. Cheng, W. Li, Y. Zhou, J. Shen, Z. Wu, G. Liu, admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties, Journal of Chemical Information and Modeling 52 (2012) 3099–3105. https://doi.org/10.1021/ci300367a10.1021/ci300367a23092397 Search in Google Scholar

[41] S.R. Devi, S. Jesmin, M. Rahman, M.A. Manchur, Y. Fujii, R.A. Kanaly, Y. Ozeki, S.M.A. Kawsar, Microbial efficacy and two step synthesis of uridine derivatives with spectral characterization, ACTA Pharmaceutica Sciencia 57 (2019) 47–68. https://doi.org/10.23893/1307-2080.APS.0570410.23893/1307-2080.APS.05704 Search in Google Scholar

[42] S.M.A. Kawsar, M. Islam, S. Jesmin, M.A. Manchur, I. Hasan, S. Rajia, Evaluation of the antimicrobial activity and cytotoxic effect of some uridine derivatives, International Journal of Biosciences 12 (2018) 211–219. http://dx.doi.org/10.12692/ijb/12.6.211-219 Search in Google Scholar

[43] M. Arifuzzaman, M.M. Islam, M.M. Rahman, A.R. Mohammad, S.M.A. Kawsar, An efficient approach to the synthesis of thymidine derivatives containing various acyl groups: characterization and antibacterial activities, ACTA Pharmaceutica Sciencia 56 (2018) 7–22. https://doi.org/10.23893/1307-2080.APS.0562210.23893/1307-2080.APS.05622 Search in Google Scholar

[44] M.M.H. Misbah, J. Ferdous, M.Z.H. Bulbul, T.S. Chowdhury, S. Dey, I. Hasan, S.M.A. Kawsar, Evaluation of MIC, MBC, MFC and anticancer activities of acylated methyl β-D-galactopyranoside esters, International Journal of Biosciences 16 (2020) 299–309. http://dx.doi.org/10.12692/ijb/16.4.299-309 Search in Google Scholar

[45] C. Huseyin, S. Murat, G. Murat, D. Serdar, K. Gulru, T.S. Claudiu, E. Deniz, Inhibition of acetylcholinesterase and butyrylcholinesterase with uracil derivatives: kinetic and computational studies, Journal of Enzyme Inhibition and Medicinal Chemistry 34 (2019) 429–437. https://doi.org/10.1080/14756366.2018.154328810.1080/14756366.2018.1543288632798830734597 Search in Google Scholar

[46] S. Kumaresan, V. Senthilkumar, A. Stephen, B.S. Balakumar, GC-MS analysis and pass-assisted prediction of biological activity spectra of extract of Phomopsis sp. isolated from Andrographis paniculata, World Journal of Pharmaceutical Research 4 (2015) 1035–1053. https://wjpr.net/dashboard/abstract_id/1994 Search in Google Scholar

[47] V. Judge, B. Narasimhan, M. Ahuja, D. Sriram, P. Yogeeswari, E.D. Clercq, C. Pannecouque, J. Balzarini, Synthesis, antimycobacterial, antiviral, antimicrobial activity and QSAR studies of N(2)-acyl isonicotinic acid hydrazide derivatives, Medicinal Chemistry 9 (2013) 53–76. https://doi.org/10.2174/15734061380448840410.2174/15734061380448840422762163 Search in Google Scholar

[48] N. Cohen, S. W. Benson, Estimation of heats of formation of organic compounds by additivity methods, Chemical Reviews 93 (1993) 2419–2438. https://doi.org/10.1021/cr00023a00510.1021/cr00023a005 Search in Google Scholar

[49] E.J. Lien, Z.R. Guo, R.L. Li, C.T. Su, Use of dipole moment as a parameter in drug-receptor interaction and quantitative structure-activity relationship studies, Journal of Pharmaceutical Sciences 71 (1982) 641–655. https://doi.org/10.1002/jps.260071061110.1002/jps.26007106117097526 Search in Google Scholar

[50] S. Saravanan, V. Balachandran, Quantum chemical studies, natural bond orbital analysis and thermodynamic function of 2,5-dichlorophenylisocyanate, Spectrochimica Acta Part A: Moecular and Biomolecular Spectroscopy 120 (2014) 351–364. https://doi.org/10.1016/j.saa.2013.10.04210.1016/j.saa.2013.10.04224200649 Search in Google Scholar

[51] M.L. Amin, P-glycoprotein inhibition for optimal drug delivery, Drug Target Insight 7 (2013) 27–34. https://doi.org/10.4137/DTI.S1251910.4137/DTI.S12519376261224023511 Search in Google Scholar

[52] C. Sanguinetti, M.T. Firouz, hERG potassium channels and cardiac arrhythmia, Nature 440 (2006) 463–469. https://doi.org/10.1038/nature0471010.1038/nature0471016554806 Search in Google Scholar

eISSN:
2286-038X
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Chemie, andere