Uneingeschränkter Zugang

Pipelined language model construction for Polish speech recognition


Zitieren

Brown, P., de Souza, P.V., Mercer, R.L., Pietra, V.J.D. and Lai, J.C. (1992). Class-based n-gram models of natural language, Computational Linguistics 18(1): 467-479.Search in Google Scholar

Brychcin, T. and Konopik, M. (2011). Morphological based language models for inflectional languages, Proceedings ofthe 6th IEEE International Conference on Intelligent DataAcquisition and Advanced Computing Systems, Praque,Czech Republic, pp. 560-563.Search in Google Scholar

Chen, S. and Goodman, S. (1999). An empirical study of smoothing techniques for language modeling, ComputerSpeech and Language 1(13): 359-394.10.1006/csla.1999.0128Search in Google Scholar

Chen, Y. and Chan, K. (2003). Extended multi-word trigger pair language model using data mining technique, Systems,Man and Cybernetics 1(1): 262-267.Search in Google Scholar

Devine, E., Gaehde, S. and Curtis, A. (2007). Comparative evaluation of three continuous speech recognition software packages in the generation of medical reports, Journal ofAmerican Medical Informatics Association 1(7): 462-468.10.1136/jamia.2000.0070462Search in Google Scholar

Gale, A. and Sampson, G. (1995). Good-Turing frequency estimation without tears, Journal of Quantitative Linguistics2(1): 217-239.10.1080/09296179508590051Search in Google Scholar

Goodman, J. (2001). A bit of progress in language modeling extended version, Technical Report MSR-TR-2001-72, Machine Learning and Applied Statistics Group, Microsoft Research, Redmond, WA.Search in Google Scholar

Iyer, R. and Ostendorf, M. (1999). Modeling long distance dependence in language: Topic mixtures versus dynamic cache models, IEEE Transactions on Speech and AudioProcessing 7(1): 30-39.10.1109/89.736328Search in Google Scholar

Jelinek, F., Merialdo, B., Roukos, S. and Strauss, M. (2001). A dynamic language model for speech recognition, Proceedingsof the Workshop on Speech and Natural Language,HLT’91, Pacific Grove, CA, USA, pp. 293-295.Search in Google Scholar

Jurafsky, D. and Matrin, J. (2009). Speech and Language Processing. An Introduction to Natural Language Processing,Computational Linguistics and Speech Recognition, Pearson Prentice Hall, Englewood Cliffs, NJ.Search in Google Scholar

Kasprzak, W., Wilkowski, A. and Czapnik, K. (2012). Hand gesture recognition based on free-form contours and probabilistic inference, International Journal of AppliedMathematics and Computer Science 22(2): 437-448, DOI: 10.2478/v10006-012-0033-6.10.2478/v10006-012-0033-6Search in Google Scholar

Katz, S. (1987). Estimation of probabilities from sparse data for the language model component of a speech recognizer, IEEE Transactions on Acoustics, Speech, and Signal Processing35(3): 400-401.10.1109/TASSP.1987.1165125Search in Google Scholar

Koehn, P. (2005). Europarl: A parallel corpus for statistical machine translation, MIT Summit 2005, Phuket, Thailand, pp. 79-86.Search in Google Scholar

Kolorenc, J., Nouza, J. and Cerva, P. (2006). Multi-words in the Czech TV and radio news transcription system, Proceedingsof SPECOM 2006, St. Petersburg, Russia, pp. 70-74.Search in Google Scholar

Lee, A., Kawahara, T. and Shikano, K. (2001). Julius-an open source real-time large vocabulary recognition engine, Proceedingsof the European Conference on Speech Communicationand Technology (EUROSPEECH), Aalborg, Denmark, pp. 1691-1694.Search in Google Scholar

Mauces, M., Rotownik, T. and Zemljak, M. (2003). Modelling highly inflected Slovenian language, International Journalof Speech Technology 1(6): 254-257.Search in Google Scholar

Mikolov, T., Deoras, A., Kombrink, S., Burget, L. and Cernocky, J. (2011). Empirical evaluation and combination of advanced language modeling techniques, INTERSPEECH,ISCA, Florence, Italy, pp. 605-608.Search in Google Scholar

Niesler, T., Whittaker, E.W.D. and Woodland, P. (1998). Comparison of part-of-speech and automatically derived category-based language models for speech recognition, Proceedings of ICASSP 98, Seattle, WA, USA, pp. 177-180.Search in Google Scholar

Piasecki, M. (2007). Polish tagger TaKIPI: Rule based construction and optimisation, Task Quarterly11(1): 151-167.Search in Google Scholar

Piasecki, M. and Broda, B. (2007). Correction of medical handwriting OCR based on semantic similarity, in H. Yin, P. Tino, E. Corchado, W. Byrne and X. Yao (Eds.), IntelligentData Engineering and Automated Learning-IDEAL2007, Lecture Notes in Computer Science, Vol. 4881, Springer Verlag, Heidelberg, pp. 437-446.Search in Google Scholar

Piasecki, M. and Radziszewski, A. (2008). Morphological prediction for Polish by a statistical a tergo index, SystemsScience 34(4): 7-17.Search in Google Scholar

Sarukkai, R. and Ballard, D. (1996). Word set probability boosting for improved spontaneous dialogue recognition. The ab and tab algorithms, Technical Report TR-601, University of Rochester, New York, NY.Search in Google Scholar

Sas, J. (2009). Optimal spoken dialog control in hands-free medical information systems, Journal of Medical Informaticsand Technologies 13: 113-120.Search in Google Scholar

Sas, J. (2010). Application of local bidirectional language model to error correction in Polish medical speech recognition, Journal of Medical Informatics and Technologies15(1): 127-134.Search in Google Scholar

Sas, J. and Żołnierek, A. (2011). Distant co-occurrence language model for ASR in loose word order languages, Proceedingsof the International Conference on Computer RecognitionSystems Cores 2011, Wrocław, Poland, pp. 767-778. Search in Google Scholar

Vaiciunas, A., Kaminskas, V. and Raskinis, G. (2004).Statistical language models of Lithuanian based on word clustering and morphological decomposition, Informatica15(4): 565-580.10.15388/Informatica.2004.079Search in Google Scholar

Ward, W. and Issar, S. (1996). A class based language model for speech recognition, Acoustics, Speech, and Signal Processing,ICASSP 96, Atlanta, GA, USA, pp. 416-418.Search in Google Scholar

Whittaker, E. and Woodland, P. (2003). Language modelling for Russian and English using words and classes, ComputerSpeech and Language 17(1): 87-104.10.1016/S0885-2308(02)00047-5Search in Google Scholar

Woliński, M. (2006). Morfeusz-a practical tool for the morphological analysis of Polish, Inteligent Processingand Web Mining: IIPWM06, Ustro´n, Poland, pp. 503-512.Search in Google Scholar

Wózniak, M. and Krawczyk, B. (2012). Combined classifier based on feature space partitioning, International Journalof Applied Mathematics and Computer Science22(4): 855-866, DOI: 10.2478/v10006-012-0063-0.10.2478/v10006-012-0063-0Search in Google Scholar

Young, S. and Everman, G. (2009). The HTK Book (for HTKVersion 3.4), Cambridge University, Cambridge.Search in Google Scholar

Zółko, B., Skurzok, D. and Ziółko, M. (2010). Word n-grams for Polish, Proceedings of the 10th IASTED InternationalConference on Artificial Intelligence and Applications(AIA 2010), Innsbruck, Austria, pp. 197-201.Search in Google Scholar

Ziółko, J., Gałka, J., Jadczyk, T., Skurzok, D. and Masior, M. (2011). Automatic speech recognition system dedicated for Polish, Proceedings of the INTERSPEECH 2011 Conference,Florence, Italy, pp. 3315-3316.Search in Google Scholar

Ziółko, J., Gałka, J. and Skurzok, D. (2010). Speech modelling using phoneme segmentation and modified weighted Levenshtein distance, Proceedings of the ICALP2010 Colloquium,Bordeaux, France, pp. 743-746. Search in Google Scholar

eISSN:
2083-8492
ISSN:
1641-876X
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Mathematik, Angewandte Mathematik