Uneingeschränkter Zugang

Preparation, characterization and antimicrobial assessment of selected ciprofloxacin salts


Zitieren

1. D. M. Campoli-Richards, J. P. Monk, A. Price, P. Benfield, P. A. Todd and A. Ward, Ciprofloxacin. A review of its antibacterial activity, pharmacokinetic properties and therapeutic use, Drugs35 (1988) 373–447; https://doi.org/10.2165/00003495-198835040-0000310.2165/00003495-198835040-00003Search in Google Scholar

2. A. D. Pranger, J. W. C. Alffenaar and R. E. Aarnoutse, Fluoroquinolones, the cornerstone of treatment of drug-resistant tuberculosis: A pharmacokinetic and pharmacodynamics approach, Curr. Pharm. Des. 17 (2011) 2900–2930; https://doi.org/10.2174/13816121179747020010.2174/138161211797470200Search in Google Scholar

3. L. D. Ross and C. M. Riley, Aqueous solubilities of some variously substituted quinolone antimicrobials, Int. J. Pharm. 63 (1990) 237–250; https://doi.org/10.1016/0378-5173(90)90130-V10.1016/0378-5173(90)90130-VSearch in Google Scholar

4. A. O. Surov, A. N. Manin, A. P. Voronin, K. V. Drozd, A. A. Simagina, A. V. Churakov and G. L. Perlovich, Pharmaceutical salts of ciprofloxacin with dicarboxylic acids, Eur. J. Pharm. Sci. 77 (2015) 112–121; https://doi.org/10.1016/j.ejps.2015.06.00410.1016/j.ejps.2015.06.004Search in Google Scholar

5. M. E. Olivera, R. H. Manzo, H. E. Junginger, K. K. Midha, V. P. Shah, S. Stavchansky, J. B. Dressman and D. M. Barends, Biowaiver monographs for immediate release solid oral dosage forms: ciprofloxacin hydrochloride, J Pharm Sci. 100 (2011) 22–33; https://doi.org/10.1002/jps.2225910.1002/jps.22259Search in Google Scholar

6. H. Arakawa, Y. Shirasaka and M. Haga, Active intestinal absorption of fluoroquinolone antibacterial agent ciprofloxacin by organic anion transporting polypeptide, Biopharm. Drug Dispos. 33 (2012) 332–341; https://doi.org/10.1002/bdd.180910.1002/bdd.1809Search in Google Scholar

7. Z. Iqbal, A. Khan, A. Naz, J. Khan and G. Khan, Pharmacokinetic interaction of ciprofloxacin with diclofenac: a single-dose, two-period crossover study in healthy adult volunteers, Clin. Drug Invest. 29 (2009) 275–281; https://doi.org/10.2165/00044011-200929040-0000610.2165/00044011-200929040-00006Search in Google Scholar

8. D. El-Sabawi, R. Abu-Dahab, A. G. Al Bakri and I. I. Hamdan, Studies on the interaction between ciprofloxacin hydrochloride and diclofenac sodium, Trop. J. Pharm. Res. 18 (2019) 377–384; https://doi.org/10.4314/tjpr.v18i2.2210.4314/tjpr.v18i2.22Search in Google Scholar

9. P. P. Bag, S. Ghosh, H. Khan, R. Devarapalliand and C. M. Reddy, Drug-drug salt forms of ciprofloxacin with diflunisal and indoprofen, Cryst. Eng. Commun. 16 (2014) 7393–7396; https://doi.org/10.1039/C4CE00631C10.1039/C4CE00631CSearch in Google Scholar

10. C. Florindo, A. Costa, C. Matos, S. L. Nunes, A. N. Matias, C. M. Duarte, L. P. Rebelo, L. C. Branco and I. M. Marrucho, Novel organic salts based on fluoroquinolone drugs: synthesis, bioavailability and toxicological profiles, Int. J. Pharm.469 (2014) 179–189; https://doi.org/10.1016/j.ijpharm.2014.04.03410.1016/j.ijpharm.2014.04.034Search in Google Scholar

11. M. Ali and M. E. Byrne, Challenges and solutions in topical ocular drug-delivery systems, Expert. Rev. Clin. Pharmacol. 1 (2008) 145–161; https://doi.org/10.1586/17512433.1.1.14510.1586/17512433.1.1.145Search in Google Scholar

12. A. A. Firsov, I. Y. Lubenko, M. V. Smirnova, E. N. Strukova and S. H. Zinner, Enrichment of fluoroquinolone-resistant Staphylococcus aureus: oscillating ciprofloxacin concentrations simulated at the upper and lower portions of the mutant selection window, J. Antimicrob. Chemother.52 (2008) 1924–1928; https://doi.org/10.1128/AAC.01371-0710.1128/AAC.01371-07Search in Google Scholar

13. N. A. Lozano-Huntelman, N. Singh, A. Valencia, P. Mira, M. Sakayan, I. Boucher, S. Tang, K. Brennan, C. Gianvecchio and S. Fitz-Gibbon, Evolution of antibiotic cross-resistance and collateral sensitivity in Staphylococcus epidermidis using the mutant prevention concentration and the mutant selection window, Evol. Appl. 13 (2020) 808–823; https://doi.org/10.1111/eva.1290310.1111/eva.12903Search in Google Scholar

14. A. Espinel-Ingroff, A. Fothergill, M. Ghannoum, E. Manavathu, L. Ostrosky-Zeichner and M. Pfaller, Quality control and reference guidelines for CLSI broth microdilution method (m38-a document) for susceptibility testing of anidulafungin against molds, J. Clin. Microbiol. 45 (2007) 2180–2182; https://doi.org/10.1128/JCM.00399-0710.1128/JCM.00399-07Search in Google Scholar

15. A. Wolfe, G. H. Shimer and J. T. Meehan, Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA, Biochemistry26 (1987) 6392–6396; https://doi.org/10.1021/bi00394a01310.1021/bi00394a013Search in Google Scholar

16. P. Gould, Salt selection for basic drugs, Int. J. Pharm. 33 (1986) 201–217; https://doi.org/10.1016/0378-5173(86)90055-410.1016/0378-5173(86)90055-4Search in Google Scholar

17. K. Zhang, L. Dai and N. Chetwyn, Simultaneous determination of positive and negative pharmaceutical counter ions using mixed-mode chromatography coupled with charged aerosol detector, J. Chromatogr. A1217 (2010) 5776–5784; https://doi.org/10.1016/j.chroma.2010.07.03510.1016/j.chroma.2010.07.035Search in Google Scholar

18. S. Bouabdallah, H. Trabelsi, M. R. Driss and S. Touil, Determination and degradation study of enalapril maleate by high performance liquid chromatography, Pharm. Chem. J. 51 (2017) 735–741; https://doi.org/10.1007/s11094-017-1684-210.1007/s11094-017-1684-2Search in Google Scholar

19. B. W. Pack and D. S. Risley, Evaluation of a monolithic silica column operated in the hydrophilic interaction chromatography mode with evaporative light scattering detection for the separation and detection of counter-ions, J. Chromatogr. A1073 (2005) 269–275; https://doi.org/10.1016/j.chroma.2004.09.06110.1016/j.chroma.2004.09.061Search in Google Scholar

20. M. Takač, Effects of substituents on the NMR features of basic bicyclic ring systems of fluoroquinolone antibiotics and the relationships between NMR chemical shifts, molecular descriptors and drug-likeness parameters, Acta Pharm. 60 (2010) 237–254; https://doi.org/10.2478/v10007-010-0023-x10.2478/v10007-010-0023-xSearch in Google Scholar

21. S. Durgapal, S. Mukhopadhyay and L. Goswami, Preparation, characterization and evaluation of floating microparticles of ciprofloxacin, Int. J. Appl. Pharm. 9 (2017) 1–8; https://doi.org/10.22159/ijap.2017v9i1.1418310.22159/ijap.2017v9i1.14183Search in Google Scholar

22. H. Changa, W. T. Jianga, Z. Lib, C. Y. Kuoc, Q. Wud, J. S. Jeana and G. Lvea, Interaction of ciprofloxacin and probe compounds with palygorskite PFl-1, J. Hazard. Mat. 303 (2016) 55–63; https://doi.org/10.1016/j.jhazmat.2015.10.01210.1016/j.jhazmat.2015.10.012Search in Google Scholar

23. M. P. López-Gresa, R. Ortiz and L. Perelló, Interactions of metal ions with two quinolone antimicrobial agents (cinoxacin and ciprofloxacin). Spectroscopic and X-ray structural characterization. Antibacterial studies, J. Inorg. Biochem.92 (2002) 65–74; https://doi.org/10.1016/S0162-0134(02)00487-710.1016/S0162-0134(02)00487-7Search in Google Scholar

24. K. Karimi, E.Pallagi, P. Szabó-Révész, I. Csóka and R. Ambrus, Development of a microparticle-based dry powder inhalation formulation of ciprofloxacin hydrochloride applying the quality by design approach, Drug Des. Dev. Ther.10 (2016) 3331–3343; https://doi.org/10.2147/DDDT.S11644310.2147/DDDT.S116443Search in Google Scholar

25. J. G. Holler, S. B. Christensen, H. C. Slotved, H. B. Rasmussen, A. Gúzman, C. E. Olsen, B. Petersen and P. Mølgaard, Novel inhibitory activity of the Staphylococcus aureus NorA efflux pump by a kaempferol rhamnoside isolated from Persea lingue Nees, J. Antimicrob. Chemother.67 (2012) 1138–1144; https://doi.org/10.1093/jac/dks00510.1093/jac/dks005Search in Google Scholar

26. G. P. Gesu, F. Marchetti, L. Piccoli and A. Cavallero, Levofloxacin and ciprofloxacin in vitro activities against 4,003 clinical bacterial isolates collected in 24 Italian laboratories, J. Antimicrob. Chemother.47 (2003) 816–819; https://doi.org/10.1128/aac.47.2.816-819.200310.1128/AAC.47.2.816-819.2003Search in Google Scholar

27. J. Vázquez, S. Merino, Ò. Doměnech, M. Berlanga, M. Viñas and M. Montero, Determination of the partition coefficients of a homologous series of ciprofloxacin: influence of the N-4 piperazinyl alkylation on the antimicrobial activity, Int. J. Pharm.220 (2001) 53–62; https://doi.org/10.1016/s0378-5173(01)00646-910.1016/S0378-5173(01)00646-9Search in Google Scholar

28. I. Vilfan, P. Drevenšek, I. Turel and U. N. Poklar, Characterization of ciprofloxacin binding to the linear single- and double-stranded DNA, Biochim. Biophys. Acta1628 (2003) 111–122; https://doi.org/10.1016/s0167-4781(03)00135-010.1016/S0167-4781(03)00135-0Search in Google Scholar

29. D. Hooper, Mode of action of fluoroquinolones, Drugs58 (1999) 6–10; https://doi.org/10.2165/00003495-199958002-0000210.2165/00003495-199958002-00002Search in Google Scholar

30. K. J. Aldred, R. J. Kerns and N. Osheroff, Mechanism of quinolone action and resistance, Biochemistry53 (2014) 1565–1574;https://doi.org/10.1021/bi500056410.1021/bi5000564Search in Google Scholar

31. C. Noble, F. Barnard and A. Maxwell, Quinolone-DNA interaction: sequence-dependent binding to single-stranded DNA reflects the interaction within the gyrase-DNA complex, Antimicrob. Agents Chemother. 47 (2003) 854–862; https://doi.org/10.1128/aac.47.3.854-862.200310.1128/AAC.47.3.854-862.2003Search in Google Scholar

eISSN:
1846-9558
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Pharmazie, andere