Zitieren

[1] C. Santhosh, V. Velmurugan, G. Jacob, S. K. Jeong, A. N. Grace, and A. Bhatnagar, “Role of nanomaterials in water treatment applications: a review,” Chemical Engineering Journal, vol. 306, pp. 1116-1137, 2016.10.1016/j.cej.2016.08.053Search in Google Scholar

[2] W. U. J. W. Supply and S. M. Programme, Progress on drinking water and sanitation: 2014 Update: World Health Organization, 2014.Search in Google Scholar

[3] M. M. A. Shirazi, A. Kargari, and M. J. A. Shirazi, “Direct contact membrane distillation for seawater desalination,” Desalination and Water Treatment, vol. 49, pp. 368-375, 2012.10.1080/19443994.2012.719466Search in Google Scholar

[4] H. S. Rai, M. S. Bhattacharyya, J. Singh, T. Bansal, P. Vats, and U. Banerjee, “Removal of dyes from the effluent of textile and dyestuff manufacturing industry: a review of emerging techniques with reference to biological treatment,” Critical reviews in environmental science and technology, vol. 35, pp. 219-238, 2005.10.1080/10643380590917932Search in Google Scholar

[5] X. Du, H. Zhang, X. Hao, G. Guan, and A. Abudula, “Facile preparation of ion-imprinted composite film for selective electrochemical removal of nickel (II) ions,” ACS applied materials & interfaces, vol. 6, pp. 9543-9549, 2014.10.1021/am501926uSearch in Google Scholar

[6] O. Sadeghi, N. Tavassoli, M. Amini, H. Ebrahimzadeh, and N. Daei, “Pyridine-functionalized mesoporous silica as an adsorbent material for the determination of nickel and lead in vegetables grown in close proximity by electrothermal atomic adsorption spectroscopy,” Food Chemistry, vol. 127, pp. 364-368, 2011.10.1016/j.foodchem.2010.12.159Search in Google Scholar

[7] R. Sharma and B. Singh, “Removal of Ni (II) ions from aqueous solutions using modified rice straw in a fixed bed column,” Bioresource technology, vol. 146, pp. 519-524, 2013.10.1016/j.biortech.2013.07.146Search in Google Scholar

[8] K. Lascelles, L. Morgan, D. Nicholls, and D. Beyersmann, “Nickel compounds, Ullmann’s Encyclopedia of Industrial Chemistry,” ed: Wiley-VCH Verlag GmbH & Co. KGaA, 2005.10.1002/14356007.a17_235.pub2Search in Google Scholar

[9] E. Denkhaus and K. Salnikow, “Nickel essentiality, toxicity, and carcinogenicity,” Critical reviews in oncology/hematology, vol. 42, pp. 35-56, 2002.10.1016/S1040-8428(01)00214-1Search in Google Scholar

[10] M. Vieira, A. A. Neto, M. Gimenes, and M. Da Silva, “Sorption kinetics and equilibrium for the removal of nickel ions from aqueous phase on calcined Bofe bentonite clay,” Journal of Hazardous Materials, vol. 177, pp. 362-371, 2010.10.1016/j.jhazmat.2009.12.04020042281Search in Google Scholar

[11] X. Zhang and X. Wang, “Adsorption and desorption of nickel (II) ions from aqueous solution by a lignocellulose/montmorillonite nanocomposite,” PloS one, vol. 10, p. e0117077, 2015.10.1371/journal.pone.0117077431560125647398Search in Google Scholar

[12] R. G. Garrett, “Natural sources of metals to the environment,” Human and Ecological Risk Assessment, vol. 6, pp. 945-963, 2000.10.1080/10807030091124383Search in Google Scholar

[13] K. K. Das and V. Büchner, “Effect of nickel exposure on peripheral tissues: role of oxidative stress in toxicity and possible protection by ascorbic acid,” Reviews on environmental health, vol. 22, pp. 157-173, 2007.10.1515/REVEH.2007.22.2.15717894205Search in Google Scholar

[14] F. Fu and Q. Wang, “Removal of heavy metal ions from wastewaters: a review,” Journal of environmental management, vol. 92, pp. 407-418, 2011.10.1016/j.jenvman.2010.11.011Search in Google Scholar

[15] D. Zamboulis, E. N. Peleka, N. K. Lazaridis, and K. A. Matis, “Metal ion separation and recovery from environmental sources using various flotation and sorption techniques,” Journal of Chemical Technology and Biotechnology, vol. 86, pp. 335-344, 2011.10.1002/jctb.2552Search in Google Scholar

[16] V. Coman, B. Robotin, and P. Ilea, “Nickel recovery/removal from industrial wastes: A review,” Resources, Conservation and Recycling, vol. 73, pp. 229-238, 2013.10.1016/j.resconrec.2013.01.019Search in Google Scholar

[17] S. R. Dhokpande, J. P. Kaware, and S. J. Kulkarni, “Research for removal of nickel from waste water-A Review,” International Journal of Science, Engineering and Technology Research, vol. 2, pp. 2162-2166, 2013.Search in Google Scholar

[18] A. Kaur and S. Sharma, “Removal of heavy metals from waste water by using various adsorbents-A review,” Indian Journal of Science and Technology, vol. 10, 2017.10.17485/ijst/2017/v10i34/117269Search in Google Scholar

[19] Y. Ku and I.-L. Jung, “Photocatalytic reduction of Cr (VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide,” Water research, vol. 35, pp. 135-142, 2001.10.1016/S0043-1354(00)00098-1Search in Google Scholar

[20] M. A. Hashim, S. Mukhopadhyay, J. N. Sahu, and B. Sengupta, “Remediation technologies for heavy metal contaminated groundwater,” Journal of environmental management, vol. 92, pp. 2355-2388, 2011.10.1016/j.jenvman.2011.06.009Search in Google Scholar

[21] A. Özverdi and M. Erdem, “Cu2+, Cd2+ and Pb2+ adsorption from aqueous solutions by pyrite and synthetic iron sulphide,” Journal of hazardous materials, vol. 137, pp. 626-632, 2006.10.1016/j.jhazmat.2006.02.05116621248Search in Google Scholar

[22] I. Giannopoulou and D. Panias, “Copper and nickel recovery from acidic polymetallic aqueous solutions,” Minerals engineering, vol. 20, pp. 753-760, 2007.10.1016/j.mineng.2007.02.009Search in Google Scholar

[23] C. Sist and G. P. Demopoulos, “Nickel hydroxide precipitation from aqueous sulfate media,” JOM Journal of the Minerals, Metals and Materials Society, vol. 55, pp. 42-46, 2003.10.1007/s11837-003-0104-0Search in Google Scholar

[24] G. Escudero, E. Espinoza, and F. Rao, “Chemical Precipitation of Nickel Species from Waste Water,” International Research Journal of Pure and Applied Chemistry, vol. 15, p. 1, 2017.10.9734/IRJPAC/2017/37905Search in Google Scholar

[25] K. Tanong, L.-H. Tran, G. Mercier, and J.-F. Blais, “Recovery of Zn (II), Mn (II), Cd (II) and Ni (II) from the unsorted spent batteries using solvent extraction, electrodeposition and precipitation methods,” Journal of cleaner production, vol. 148, pp. 233-244, 2017.10.1016/j.jclepro.2017.01.158Search in Google Scholar

[26] T. Subbaiah, S. Mallick, K. Mishra, K. Sanjay, and R. Das, “Electrochemical precipitation of nickel hydroxide,” Journal of power sources, vol. 112, pp. 562-569, 2002.10.1016/S0378-7753(02)00470-6Search in Google Scholar

[27] A. Dąbrowski, Z. Hubicki, P. Podkościelny, and E. Robens, “Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method,” Chemosphere, vol. 56, pp. 91-106, 2004.10.1016/j.chemosphere.2004.03.006Search in Google Scholar

[28] T. A. Kurniawan, G. Y. Chan, W.-H. Lo, and S. Babel, “Physico–chemical treatment techniques for wastewater laden with heavy metals,” Chemical engineering journal, vol. 118, pp. 83-98, 2006.10.1016/j.cej.2006.01.015Search in Google Scholar

[29] F. Gode and E. Pehlivan, “Removal of chromium (III) from aqueous solutions using Lewatit S 100: the effect of pH, time, metal concentration and temperature,” Journal of Hazardous Materials, vol. 136, pp. 330-337, 2006.10.1016/j.jhazmat.2005.12.021Search in Google Scholar

[30] A. Azimi, A. Azari, M. Rezakazemi, and M. Ansarpour, “Removal of heavy metals from industrial wastewaters: a review,” ChemBioEng Reviews, vol. 4, pp. 37-59, 2017.10.1002/cben.201600010Search in Google Scholar

[31] B. Alyüz and S. Veli, “Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins,” Journal of Hazardous Materials, vol. 167, pp. 482-488, 2009.10.1016/j.jhazmat.2009.01.006Search in Google Scholar

[32] P. S. Kumar, K. Ramakrishnan, and R. Gayathri, “Removal of nickel (II) from aqueous solutions by ceralite IR 120 cationic exchange resins,” J. Eng. Sci. Technol, vol. 5, pp. 232-243, 2010.Search in Google Scholar

[33] R. Dave, G. Dave, and V. Mishra, “REMOVAL OF NICKEL FROM ELETROPLATING WASTEWATER BY WEAKLY BASIC CHELATING ANION EXCHANGE RESINS: DOWEX 50x4, DOWEX 50x2 AND DOWEX M-4195,” Journal of Applied Sciences in Environmental Sanitation, vol. 6, 2011.Search in Google Scholar

[34] T. Zewail and N. Yousef, “Kinetic study of heavy metal ions removal by ion exchange in batch conical air spouted bed,” Alexandria Engineering Journal, vol. 54, pp. 83-90, 2015.10.1016/j.aej.2014.11.008Search in Google Scholar

[35] E. N. Peleka, G. P. Gallios, and K. A. Matis, “A perspective on flotation: a review,” Journal of Chemical Technology & Biotechnology, vol. 93, pp. 615-623, 2018.10.1002/jctb.5486Search in Google Scholar

[36] F. S. Hoseinian, B. Rezai, E. Kowsari, and M. Safari, “Kinetic study of Ni (II) removal using ion flotation: Effect of chemical interactions,” Minerals Engineering, vol. 119, pp. 212-221, 2018.10.1016/j.mineng.2018.01.028Search in Google Scholar

[37] F. M. Doyle and Z. Liu, “The effect of triethylenetetraamine (Trien) on the ion flotation of Cu 2+ and Ni 2+,” Journal of colloid and interface science, vol. 258, pp. 396-403, 2003.10.1016/S0021-9797(02)00092-9Search in Google Scholar

[38] Z. Liu and F. M. Doyle, “Ion flotation of Co2+, Ni2+, and Cu2+ using dodecyldiethylenetriamine (Ddien),” Langmuir, vol. 25, pp. 8927-8934, 2009.10.1021/la900098gSearch in Google Scholar

[39] A. Turtureanu, C. Georgescu, and L. Oprean, “Nickel removal from aqueous solutions by flotation with cationic collector. Determination of the optimum separation conditions,” relation, vol. 100, p. 1, 2008.Search in Google Scholar

[40] F. S. Hoseinian, M. Irannajad, and A. J. Nooshabadi, “Ion flotation for removal of Ni (II) and Zn (II) ions from wastewaters,” International Journal of Mineral Processing, vol. 143, pp. 131-137, 2015.10.1016/j.minpro.2015.07.006Search in Google Scholar

[41] M. Barakat, “New trends in removing heavy metals from industrial wastewater,” Arabian Journal of Chemistry, vol. 4, pp. 361-377, 2011.10.1016/j.arabjc.2010.07.019Search in Google Scholar

[42] D. S. Patil, S. M. Chavan, and J. U. K. Oubagaranadin, “A review of technologies for manganese removal from wastewaters,” Journal of Environmental Chemical Engineering, vol. 4, pp. 468-487, 2016.10.1016/j.jece.2015.11.028Search in Google Scholar

[43] M. Mohsen-Nia, P. Montazeri, and H. Modarress, “Removal of Cu2+ and Ni2+ from wastewater with a chelating agent and reverse osmosis processes,” Desalination, vol. 217, pp. 276-281, 2007.10.1016/j.desal.2006.01.043Search in Google Scholar

[44] U. Ipek, “Removal of Ni (II) and Zn (II) from an aqueous solutionby reverse osmosis,” Desalination, vol. 174, pp. 161-169, 2005.10.1016/j.desal.2004.09.009Search in Google Scholar

[45] J. Landaburu-Aguirre, E. Pongrácz, A. Sarpola, and R. L. Keiski, “Simultaneous removal of heavy metals from phosphorous rich real wastewaters by micellar-enhanced ultrafiltration,” Separation and purification technology, vol. 88, pp. 130-137, 2012.10.1016/j.seppur.2011.12.025Search in Google Scholar

[46] G. Borbély and E. Nagy, “Removal of zinc and nickel ions by complexation–membrane filtration process from industrial wastewater,” Desalination, vol. 240, pp. 218-226, 2009.10.1016/j.desal.2007.11.073Search in Google Scholar

[47] A. Kryvoruchko, L. Yurlova, and B. Kornilovich, “Purification of water containing heavy metals by chelating-enhanced ultrafiltration,” Desalination, vol. 144, pp. 243-248, 2002.10.1016/S0011-9164(02)00319-3Search in Google Scholar

[48] Z. Murthy and L. B. Chaudhari, “Application of nanofiltration for the rejection of nickel ions from aqueous solutions and estimation of membrane transport parameters,” Journal of Hazardous Materials, vol. 160, pp. 70-77, 2008.10.1016/j.jhazmat.2008.02.08518400379Search in Google Scholar

[49] Z. Murthy and L. B. Chaudhari, “Rejection behavior of nickel ions from synthetic wastewater containing Na2SO4, NiSO4, MgCl2 and CaCl2 salts by nanofiltration and characterization of the membrane,” Desalination, vol. 247, pp. 610-622, 2009.10.1016/j.desal.2008.10.009Search in Google Scholar

[50] L. Yurlova, A. Kryvoruchko, and B. Kornilovich, “Removal of Ni (II) ions from wastewater by micellar-enhanced ultrafiltration,” Desalination, vol. 144, pp. 255-260, 2002.10.1016/S0011-9164(02)00321-1Search in Google Scholar

[51] R. Molinari, T. Poerio, and P. Argurio, “Selective separation of copper (II) and nickel (II) from aqueous media using the complexation–ultrafiltration process,” Chemosphere, vol. 70, pp. 341-348, 2008.10.1016/j.chemosphere.2007.07.041Search in Google Scholar

[52] J.-J. Qin, M.-N. Wai, M.-H. Oo, and F.-S. Wong, “A feasibility study on the treatment and recycling of a wastewater from metal plating,” Journal of Membrane Science, vol. 208, pp. 213-221, 2002.10.1016/S0376-7388(02)00263-6Search in Google Scholar

[53] A. W. Mohammad, R. Othaman, and N. Hilal, “Potential use of nanofiltration membranes in treatment of industrial wastewater from Ni-P electroless plating,” Desalination, vol. 168, pp. 241-252, 2004.10.1016/j.desal.2004.07.004Search in Google Scholar

[54] K. A. Krishnan, K. Sreejalekshmi, and R. Baiju, “Nickel (II) adsorption onto biomass based activated carbon obtained from sugarcane bagasse pith,” Bioresource technology, vol. 102, pp. 10239-10247, 2011.10.1016/j.biortech.2011.08.069Search in Google Scholar

[55] V. Gupta, “Application of low-cost adsorbents for dye removal–A review,” Journal of environmental management, vol. 90, pp. 2313-2342, 2009.10.1016/j.jenvman.2008.11.017Search in Google Scholar

[56] M. Zhou and L. Lei, “Electrochemical regeneration of activated carbon loaded with p-nitrophenol in a fluidized electrochemical reactor,” Electrochimica acta, vol. 51, pp. 4489-4496, 2006.10.1016/j.electacta.2005.12.028Search in Google Scholar

[57] E. Pehlivan and G. Arslan, “Removal of metal ions using lignite in aqueous solution—Low cost biosorbents,” Fuel processing technology, vol. 88, pp. 99-106, 2007.10.1016/j.fuproc.2006.09.004Search in Google Scholar

[58] A. Ewecharoen, P. Thiravetyan, E. Wendel, and H. Bertagnolli, “Nickel adsorption by sodium polyacrylate-grafted activated carbon,” Journal of Hazardous Materials, vol. 171, pp. 335-339, 2009.10.1016/j.jhazmat.2009.06.008Search in Google Scholar

[59] R. Sudha, K. Srinivasan, and P. Premkumar, “Removal of nickel (II) from aqueous solution using Citrus Limettioides peel and seed carbon,” Ecotoxicology and environmental safety, vol. 117, pp. 115-123, 2015.10.1016/j.ecoenv.2015.03.025Search in Google Scholar

[60] A. Keränen, T. Leiviskä, A. Salakka, and J. Tanskanen, “Removal of nickel and vanadium from ammoniacal industrial wastewater by ion exchange and adsorption on activated carbon,” Desalination and Water Treatment, vol. 53, pp. 2645-2654, 2015.10.1080/19443994.2013.868832Search in Google Scholar

[61] K. Kadirvelu, K. Thamaraiselvi, and C. Namasivayam, “Adsorption of nickel (II) from aqueous solution onto activated carbon prepared from coirpith,” Separation and purification technology, vol. 24, pp. 497-505, 2001.10.1016/S1383-5866(01)00149-6Search in Google Scholar

[62] P. M. Choksi and V. Y. Joshi, “Adsorption kinetic study for the removal of nickel (II) and aluminum (III) from an aqueous solution by natural adsorbents,” Desalination, vol. 208, pp. 216-231, 2007.10.1016/j.desal.2006.04.081Search in Google Scholar

[63] G. Wang, A. Li, and M. Li, “Sorption of nickel ions from aqueous solutions using activated carbon derived from walnut shell waste,” Desalination and Water Treatment, vol. 16, pp. 282-289, 2010.10.5004/dwt.2010.1863Search in Google Scholar

[64] M. Betancur, P. Bonelli, J. Velásquez, and A. Cukierman, “Potentiality of lignin from the Kraft pulping process for removal of trace nickel from wastewater: effect of demineralisation,” Bioresource technology, vol. 100, pp. 1130-1137, 2009.10.1016/j.biortech.2008.08.023Search in Google Scholar

[65] A. Bhatnagar and A. Minocha, “Biosorption optimization of nickel removal from water using Punica granatum peel waste,” Colloids and Surfaces B: Biointerfaces, vol. 76, pp. 544-548, 2010.10.1016/j.colsurfb.2009.12.016Search in Google Scholar

[66] G. Crini, “Non-conventional low-cost adsorbents for dye removal: a review,” Bioresource technology, vol. 97, pp. 1061-1085, 2006.10.1016/j.biortech.2005.05.001Search in Google Scholar

[67] A. Ewecharoen, P. Thiravetyan, and W. Nakbanpote, “Comparison of nickel adsorption from electroplating rinse water by coir pith and modified coir pith,” Chemical engineering journal, vol. 137, pp. 181-188, 2008.10.1016/j.cej.2007.04.007Search in Google Scholar

[68] A. Thevannan, R. Mungroo, and C. H. Niu, “Biosorption of nickel with barley straw,” Bioresource technology, vol. 101, pp. 1776-1780, 2010.10.1016/j.biortech.2009.10.035Search in Google Scholar

[69] M. N. Zafar, I. Aslam, R. Nadeem, S. Munir, U. A. Rana, and S. U.-D. Khan, “Characterization of chemically modified biosorbents from rice bran for biosorption of Ni (II),” Journal of the Taiwan Institute of Chemical Engineers, vol. 46, pp. 82-88, 2015.10.1016/j.jtice.2014.08.034Search in Google Scholar

[70] P. S. Kumar, S. Ramalingam, S. D. Kirupha, A. Murugesan, T. Vidhyadevi, and S. Sivanesan, “Adsorption behavior of nickel (II) onto cashew nut shell: Equilibrium, thermodynamics, kinetics, mechanism and process design,” Chemical Engineering Journal, vol. 167, pp. 122-131, 2011.10.1016/j.cej.2010.12.010Search in Google Scholar

[71] E. Malkoc and Y. Nuhoglu, “Nickel (II) adsorption mechanism from aqueous solution by a new adsorbent—Waste acorn of Quercus ithaburensis,” Environmental Progress & Sustainable Energy, vol. 29, pp. 297-306, 2010.10.1002/ep.10412Search in Google Scholar

[72] B. Bayat, “Comparative study of adsorption properties of Turkish fly ashes: I. The case of nickel (II), copper (II) and zinc (II),” Journal of Hazardous Materials, vol. 95, pp. 251-273, 2002.10.1016/S0304-3894(02)00140-1Search in Google Scholar

[73] V. C. Srivastava, I. D. Mall, and I. M. Mishra, “Equilibrium modelling of single and binary adsorption of cadmium and nickel onto bagasse fly ash,” Chemical engineering journal, vol. 117, pp. 79-91, 2006.10.1016/j.cej.2005.11.021Search in Google Scholar

[74] Y. Hannachi, N. A. Shapovalov, and A. Hannachi, “Adsorption of nickel from aqueous solution by the use of low-cost adsorbents,” Korean journal of chemical engineering, vol. 27, pp. 152-158, 2010.10.1007/s11814-009-0303-7Search in Google Scholar

[75] H. Z. Mousavi and S. Seyedi, “Nettle ash as a low cost adsorbent for the removal of nickel and cadmium from wastewater,” International Journal of Environmental Science & Technology, vol. 8, pp. 195-202, 2011.10.1007/BF03326209Search in Google Scholar

[76] F. M. El-Dars, M. A. Elngar, S. T. Abdel-Rahim, N. El-Hussiny, and M. Shalabi, “Kinetic of nickel (II) removal from aqueous solution using different particle size of water-cooled blast furnace slag,” Desalination and Water Treatment, vol. 54, pp. 769-778, 2015.10.1080/19443994.2014.883578Search in Google Scholar

[77] E. D. van Hullebusch, A. Peerbolte, M. H. Zandvoort, and P. N. Lens, “Sorption of cobalt and nickel on anaerobic granular sludges: isotherms and sequential extraction,” Chemosphere, vol. 58, pp. 493-505, 2005.10.1016/j.chemosphere.2004.09.017Search in Google Scholar

[78] M. G. da Fonseca, M. M. de Oliveira, and L. N. Arakaki, “Removal of cadmium, zinc, manganese and chromium cations from aqueous solution by a clay mineral,” Journal of Hazardous Materials, vol. 137, pp. 288-292, 2006.10.1016/j.jhazmat.2006.02.001Search in Google Scholar

[79] F. Uddin, “Clays, nanoclays, and montmorillonite minerals,” Metallurgical and Materials Transactions A, vol. 39, pp. 2804-2814, 2008.10.1007/s11661-008-9603-5Search in Google Scholar

[80] Ö. Yavuz, Y. Altunkaynak, and F. Güzel, “Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite,” Water research, vol. 37, pp. 948-952, 2003.10.1016/S0043-1354(02)00409-8Search in Google Scholar

[81] C. O. Ijagbemi, M.-H. Baek, and D.-S. Kim, “Adsorptive performance of un-calcined sodium exchanged and acid modified montmorillonite for Ni 2+ removal: Equilibrium, kinetics, thermodynamics and regeneration studies,” Journal of Hazardous Materials, vol. 174, pp. 746-755, 2010.10.1016/j.jhazmat.2009.09.11519833431Search in Google Scholar

[82] S. Yang, J. Li, Y. Lu, Y. Chen, and X. Wang, “Sorption of Ni (II) on GMZ bentonite: effects of pH, ionic strength, foreign ions, humic acid and temperature,” Applied Radiation and Isotopes, vol. 67, pp. 1600-1608, 2009.10.1016/j.apradiso.2009.03.118Search in Google Scholar

[83] E. Katsou, S. Malamis, K. J. Haralambous, and M. Loizidou, “Use of ultrafiltration membranes and aluminosilicate minerals for nickel removal from industrial wastewater,” Journal of Membrane Science, vol. 360, pp. 234-249, 2010.10.1016/j.memsci.2010.05.020Search in Google Scholar

[84] A. Barati, M. Asgari, T. Miri, and Z. Eskandari, “Removal and recovery of copper and nickel ions from aqueous solution by poly (methacrylamideco-acrylic acid)/montmorillonite nanocomposites,” Environmental Science and Pollution Research, vol. 20, pp. 6242-6255, 2013.10.1007/s11356-013-1672-3Search in Google Scholar

[85] N. Alandis, O. Aldayel, W. Mekhemer, J. Hefne, and H. Jokhab, “Thermodynamic and kinetic studies for the adsorption of Fe (III) and Ni (II) ions from aqueous solution using natural bentonite,” Journal of dispersion science and technology, vol. 31, pp. 1526-1534, 2010.10.1080/01932690903294097Search in Google Scholar

[86] Z.-r. Liu and S.-q. Zhou, “Adsorption of copper and nickel on Na-bentonite,” Process safety and environmental protection, vol. 88, pp. 62-66, 2010.10.1016/j.psep.2009.09.001Search in Google Scholar

[87] C. Martínez and J. Pérez-Pariente, “Zeolites and ordered porous solids,” in 3rd FEZA School on Zeolites: fundamentals and applications”, ed: Editorial Universitat Politecnica de Valencia Valencia, 2011.Search in Google Scholar

[88] M. Panayotova and B. Velikov, “Influence of zeolite transformation in a homoionic form on the removal of some heavy metal ions from wastewater,” Journal of Environmental Science and Health, Part A, vol. 38, pp. 545-554, 2003.10.1081/ESE-120016916Search in Google Scholar

[89] N. Rajic, D. Stojakovic, M. Jovanovic, N. Z. Logar, M. Mazaj, and V. Kaucic, “Removal of nickel (II) ions from aqueous solutions using the natural clinoptilolite and preparation of nano-NiO on the exhausted clinoptilolite,” Applied Surface Science, vol. 257, pp. 1524-1532, 2010.10.1016/j.apsusc.2010.08.090Search in Google Scholar

[90] S. Kocaoba, Y. Orhan, and T. Akyüz, “Kinetics and equilibrium studies of heavy metal ions removalby use of natural zeolite,” Desalination, vol. 214, pp. 1-10, 2007.10.1016/j.desal.2006.09.023Search in Google Scholar

[91] S. Çoruh and O. N. Ergun, “Ni2+ removal from aqueous solutions using conditioned clinoptilolites: Kinetic and isotherm studies,” Environmental Progress & Sustainable Energy: An Official Publication of the American Institute of Chemical Engineers, vol. 28, pp. 162-172, 2009.10.1002/ep.10316Search in Google Scholar

[92] M. Sprynskyy, B. Buszewski, A. P. Terzyk, and J. Namieśnik, “Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite,” Journal of colloid and interface science, vol. 304, pp. 21-28, 2006.10.1016/j.jcis.2006.07.06816989853Search in Google Scholar

[93] K. Hui, C. Y. H. Chao, and S. Kot, “Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash,” Journal of Hazardous Materials, vol. 127, pp. 89-101, 2005.10.1016/j.jhazmat.2005.06.027Search in Google Scholar

[94] S. Kumar, W. Ahlawat, G. Bhanjana, S. Heydarifard, M. M. Nazhad, and N. Dilbaghi, “Nanotechnology-based water treatment strategies,” Journal of nanoscience and nanotechnology, vol. 14, pp. 1838-1858, 2014.10.1166/jnn.2014.9050Search in Google Scholar

[95] S. Yang, J. Li, D. Shao, J. Hu, and X. Wang, “Adsorption of Ni (II) on oxidized multi-walled carbon nanotubes: effect of contact time, pH, foreign ions and PAA,” Journal of Hazardous Materials, vol. 166, pp. 109-116, 2009.10.1016/j.jhazmat.2008.11.003Search in Google Scholar

[96] D. Schmidt, D. Shah, and E. P. Giannelis, “New advances in polymer/layered silicate nanocomposites,” Current Opinion in Solid State and Materials Science, vol. 6, pp. 205-212, 2002.10.1016/S1359-0286(02)00049-9Search in Google Scholar

[97] T. A. Kurniawan, M. E. Sillanpää, and M. Sillanpää, “Nanoadsorbents for remediation of aquatic environment: local and practical solutions for global water pollution problems,” Critical reviews in environmental science and technology, vol. 42, pp. 1233-1295, 2012.10.1080/10643389.2011.556553Search in Google Scholar

[98] B. Bhushan, Springer handbook of nanotechnology: Springer Science & Business Media, 2010.10.1007/978-3-642-02525-9Search in Google Scholar

[99] I. Ali, “New generation adsorbents for water treatment,” Chemical reviews, vol. 112, pp. 5073-5091, 2012.10.1021/cr300133dSearch in Google Scholar

[100] M. M. Doroodmand, Z. Tahvildar, and M. H. Sheikhi, “Multi-Walled Carbon Nanotubes/Polyacrylonitrile Composite as Novel Semi-Permeable Filter for Water Treatment Process,” Science of Advanced Materials, vol. 4, pp. 1085-1095, 2012.10.1166/sam.2012.1395Search in Google Scholar

[101] M. I. Kandah and J.-L. Meunier, “Removal of nickel ions from water by multi-walled carbon nanotubes,” Journal of Hazardous Materials, vol. 146, pp. 283-288, 2007.10.1016/j.jhazmat.2006.12.019Search in Google Scholar

[102] C. Lu and C. Liu, “Removal of nickel (II) from aqueous solution by carbon nanotubes,” Journal of Chemical Technology and Biotechnology, vol. 81, pp. 1932-1940, 2006.10.1002/jctb.1626Search in Google Scholar

[103] M. Aliabadi, M. Irani, J. Ismaeili, H. Piri, and M. J. Parnian, “Electrospun nanofiber membrane of PEO/Chitosan for the adsorption of nickel, cadmium, lead and copper ions from aqueous solution,” Chemical engineering journal, vol. 220, pp. 237-243, 2013.10.1016/j.cej.2013.01.021Search in Google Scholar

[104] M. A. Adolph, Y. M. Xavier, P. Kriveshini, and K. Rui, “Phosphine functionalised multiwalled carbon nanotubes: A new adsorbent for the removal of nickel from aqueous solution,” Journal of Environmental Sciences, vol. 24, pp. 1133-1141, 2012.10.1016/S1001-0742(11)60880-2Search in Google Scholar

[105] Y. Ren, N. Yan, Q. Wen, Z. Fan, T. Wei, M. Zhang, and J. Ma, “Graphene/δ-MnO2 composite as adsorbent for the removal of nickel ions from wastewater,” Chemical Engineering Journal, vol. 175, pp. 1-7, 2011.10.1016/j.cej.2010.08.010Search in Google Scholar

[106] G. Chen, “Electrochemical technologies in wastewater treatment,” Separation and purification technology, vol. 38, pp. 11-41, 2004.10.1016/j.seppur.2003.10.006Search in Google Scholar

[107] L. Koene and L. Janssen, “Removal of nickel from industrial process liquids,” Electrochimica acta, vol. 47, pp. 695-703, 2001.10.1016/S0013-4686(01)00750-2Search in Google Scholar

[108] M. Y. Mollah, P. Morkovsky, J. A. Gomes, M. Kesmez, J. Parga, and D. L. Cocke, “Fundamentals, present and future perspectives of electrocoagulation,” Journal of Hazardous Materials, vol. 114, pp. 199-210, 2004.10.1016/j.jhazmat.2004.08.00915511592Search in Google Scholar

[109] I. Heidmann and W. Calmano, “Removal of Zn (II), Cu (II), Ni (II), Ag (I) and Cr (VI) present in aqueous solutions by aluminium electrocoagulation,” Journal of Hazardous Materials, vol. 152, pp. 934-941, 2008.10.1016/j.jhazmat.2007.07.068Search in Google Scholar

[110] I. Kabdaşlı, T. Arslan, T. Ölmez-Hancı, I. Arslan-Alaton, and O. Tünay, “Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes,” Journal of Hazardous Materials, vol. 165, pp. 838-845, 2009.10.1016/j.jhazmat.2008.10.065Search in Google Scholar

[111] F. Akbal and S. Camcı, “Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation,” Desalination, vol. 269, pp. 214-222, 2011.10.1016/j.desal.2010.11.001Search in Google Scholar

[112] U. T. Un and S. E. Ocal, “Removal of heavy metals (Cd, Cu, Ni) by electrocoagulation,” International Journal of Environmental Science and Development, vol. 6, p. 425, 2015.10.7763/IJESD.2015.V6.630Search in Google Scholar

[113] T. U. A. Current, “Removal of nickel from drinking water by electrocoagulation technique using alternating current,” Current Research in Chemistry, vol. 4, pp. 41-50, 2012.10.3923/crc.2012.41.50Search in Google Scholar

[114] S. Vasudevan, J. Lakshmi, and G. Sozhan, “Optimization of electrocoagulation process for the simultaneous removal of mercury, lead, and nickel from contaminated water,” Environmental Science and Pollution Research, vol. 19, pp. 2734-2744, 2012.10.1007/s11356-012-0773-8Search in Google Scholar

[115] M. Belkacem, M. Khodir, and S. Abdelkrim, “Treatment characteristics of textile wastewater and removal of heavy metals using the electroflotation technique,” Desalination, vol. 228, pp. 245-254, 2008.10.1016/j.desal.2007.10.013Search in Google Scholar

[116] K. Dermentzis, “Removal of nickel from electroplating rinse waters using electrostatic shielding electrodialysis/electrodeionization,” Journal of Hazardous Materials, vol. 173, pp. 647-652, 2010.10.1016/j.jhazmat.2009.08.133Search in Google Scholar

[117] N. Tzanetakis, W. Taama, K. Scott, R. Jachuck, R. Slade, and J. Varcoe, “Comparative performance of ion exchange membranes for electrodialysis of nickel and cobalt,” Separation and Purification Technology, vol. 30, pp. 113-127, 2003.10.1016/S1383-5866(02)00139-9Search in Google Scholar

eISSN:
2576-6732
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Chemie, Nachhaltige Chemie, Katalyse, andere