Zitieren

1. Gargett, C. E. and Masuda, H., “Adult stem cells in the endometrium,” Mol. Hum. Reprod., vol. 16, no. 11, pp. 818-834, Nov. 2010.10.1093/molehr/gaq061Search in Google Scholar

2. Kranc, W. et al., “The origin, in vitro differentiation, and stemness specificity of progenitor cells.,” J. Biol. Regul. Homeost. Agents, vol. 31, no. 2, pp. 365-369, 2017.Search in Google Scholar

3. Kossowska-Tomaszczuk, K. et al., “The Multipotency of Luteinizing Granulosa Cells Collected from Mature Ovarian Follicles,” Stem Cells, vol. 27, no. 1, pp. 210-219, Jan. 2009.10.1634/stemcells.2008-0233Search in Google Scholar

4. Marx, V., “Stem cells: a dish of neurons,” Nat. Methods, vol. 13, no. 8, pp. 617-622, Jul. 2016.10.1038/nmeth.3927Search in Google Scholar

5. Weissman, I. L., “Stem cells: units of development, units of regeneration, and units in evolution.,” Cell, vol. 100, no. 1, pp. 157-68, Jan. 2000.10.1016/S0092-8674(00)81692-XSearch in Google Scholar

6. Chan, R. W. S., Schwab, K. E., and Gargett, C. E., “Clonogenicity of Human Endometrial Epithelial and Stromal Cells,” Biol. Reprod., vol. 70, no. 6, pp. 1738-1750, Jun. 2004.10.1095/biolreprod.103.02410914766732Open DOISearch in Google Scholar

7. Young, H. E. and Black, A. C., “Adult stem cells,” Anat. Rec., vol. 276A, no. 1, pp. 75-102, Jan. 2004.10.1002/ar.a.1013414699636Search in Google Scholar

8. Taylor, D. A. et al., “Delivery of primary autologous skeletal myoblasts into rabbit heart by coronary infusion: a potential approach to myocardial repair.,” Proc. Assoc. Am. Physicians, vol. 109, no. 3, pp. 245-53, May 1997.Search in Google Scholar

9. Cossu, G. and Biressi, S., “Satellite cells, myoblasts and other occasional myogenic progenitors: Possible origin, phenotypic features and role in muscle regeneration,” Semin. Cell Dev. Biol., vol. 16, no. 4-5, pp. 623-631, Aug. 2005.10.1016/j.semcdb.2005.07.00316118057Open DOISearch in Google Scholar

10. Ailhaud, G., Grimaldi, P., and Négrel, R., “Cellular and Molecular Aspects of Adipose Tissue Development,” Annu. Rev. Nutr., vol. 12, no. 1, pp. 207-233, Jul. 1992.10.1146/annurev.nu.12.070192.0012311503804Search in Google Scholar

11. Caplan, A. I., Elyaderani, M., Mochizuki, Y., Wakitani, S., and Goldberg, V. M., “Principles of cartilage repair and regeneration.,” Clin. Orthop. Relat. Res., no. 342, pp. 254-69, Sep. 1997.10.1097/00003086-199709000-00033Search in Google Scholar

12. Jagannathan-Bogdan, M. and Zon, L. I., “Hematopoiesis.,” Development, vol. 140, no. 12, pp. 2463-7, Jun. 2013.Search in Google Scholar

13. Bryja, A. et al., “The biomedical aspects of oral mucosal epithelial cell culture in mammals.,” J. Biol. Regul. Homeost. Agents, vol. 31, no. 1, pp. 81-85, 2017.Search in Google Scholar

14. Ito, S., Kobayashi, Y., Yamamoto, Y., Kimura, K., and Okuda, K., “Remodeling of bovine oviductal epithelium by mitosis of secretory cells,” Cell Tissue Res., vol. 366, no. 2, pp. 403-410, Nov. 2016.10.1007/s00441-016-2432-827256395Search in Google Scholar

15. Teixeira, J., Rueda, B. R., and Pru, J. K., Uterine stem cells. Harvard Stem Cell Institute, 2008.10.3824/stembook.1.16.1Search in Google Scholar

16. Fu, X., Sun, X., Li, X., and Sheng, Z., “Dedifferentiation of epidermal cells to stem cells in vivo,” Lancet, vol. 358, no. 9287, pp. 1067-1068, Sep. 2001.Search in Google Scholar

17. Abe, H. and Hoshi, H., “Bovine oviductal epithelial cells: their cell culture and applications in studies for reproductive biology.,” Cytotechnology, vol. 23, no. 1-3, pp. 171-83, Jan. 1997.10.1023/A:1007929826186Search in Google Scholar

18. Asahara, T. et al., “Isolation of putative progenitor endothelial cells for angiogenesis.,” Science, vol. 275, no. 5302, pp. 964-7, Feb. 1997.Search in Google Scholar

19. Ferrari, G. et al., “Muscle regeneration by bone marrow-derived myogenic progenitors.,” Science, vol. 279, no. 5356, pp. 1528-30, Mar. 1998.Search in Google Scholar

20. Petersen, B. E. et al., “Bone marrow as a potential source of hepatic oval cells.,” Science, vol. 284, no. 5417, pp. 1168-70, May 1999.Search in Google Scholar

21. Eglitis, M. A. and Mezey, E., “Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice.,” Proc. Natl. Acad. Sci. U. S. A., vol. 94, no. 8, pp. 4080-5, Apr. 1997.10.1073/pnas.94.8.4080Open DOISearch in Google Scholar

22. Sapir, T. et al., “Cell-replacement therapy for diabetes: Generating functional insulin-producing tissue from adult human liver cells.,” Proc. Natl. Acad. Sci. U. S. A., vol. 102, no. 22, pp. 7964-9, May 2005.10.1073/pnas.0405277102Open DOISearch in Google Scholar

23. Pittenger, M. F. et al., “Multilineage potential of adult human mesenchymal stem cells.,” Science, vol. 284, no. 5411, pp. 143-7, Apr. 1999.Search in Google Scholar

24. Hu, E., Tontonoz, P., and Spiegelman, B. M., “Transdifferentiation of myoblasts by the adipogenic transcription factors PPAR gamma and C/EBP alpha.,” Proc. Natl. Acad. Sci. U. S. A., vol. 92, no. 21, pp. 9856-60, Oct. 1995.10.1073/pnas.92.21.9856Open DOISearch in Google Scholar

25. Davis, R. L., Weintraub, H., and Lassar, A. B., “Expression of a single transfected cDNA converts fibroblasts to myoblasts,” Cell, vol. 51, no. 6, pp. 987-1000, Dec. 1987.10.1016/0092-8674(87)90585-XOpen DOISearch in Google Scholar

26. Auersperg, N., Wong, A. S. T., Choi, K.-C., Kang, S. K., and Leung, P. C. K., “Ovarian Surface Epithelium: Biology, Endocrinology, and Pathology,” Endocr. Rev., vol. 22, no. 2, pp. 255-288, Apr. 2001.10.1210/edrv.22.2.042211294827Search in Google Scholar

27. Kurman, R. J. and Shih, I.-M., “The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory.,” Am. J. Surg. Pathol., vol. 34, no. 3, pp. 433-43, Mar. 2010.10.1097/PAS.0b013e3181cf3d79284179120154587Open DOISearch in Google Scholar

28. Peters, D. G. et al., “Comparative Gene Expression Analysis of Ovarian Carcinoma and Normal Ovarian Epithelium by Serial Analysis of Gene Expression,” Cancer Epidemiol. Prev. Biomarkers, vol. 14, no. 7, 2005.10.1158/1055-9965.EPI-04-070416030107Search in Google Scholar

29. Streuli, C. H., Bailey, N., and Bissell, M. J., “Control of mammary epithelial differentiation: basement membrane induces tissue-specific gene expression in the absence of cell-cell interaction and morphological polarity.,” J. Cell Biol., vol. 115, no. 5, pp. 1383-95, Dec. 1991.Search in Google Scholar

30. Streuli, C. H. and Bissell, M. J., “Mammary epithelial cells, extracellular matrix, and gene expression.,” Cancer Treat. Res., vol. 53, pp. 365-81, 1991.10.1007/978-1-4615-3940-7_171672087Search in Google Scholar

31. Rajendran, P. et al., “The vascular endothelium and human diseases.,” Int. J. Biol. Sci., vol. 9, no. 10, pp. 1057-69, 2013.Search in Google Scholar

32. Ferenczy, A., Bertrand, G., and Gelfand, M. M., “Proliferation kinetics of human endometrium during the normal menstrual cycle.,” Am. J. Obstet. Gynecol., vol. 133, no. 8, pp. 859-67, Apr. 1979.10.1016/0002-9378(79)90302-8Search in Google Scholar

33. Gargett, C. E., Schwab, K. E., and Deane, J. A., “Endometrial stem/progenitor cells: The first 10 years,” Human Reproduction Update, vol. 22, no. 2. 2016.10.1093/humupd/dmv051Search in Google Scholar

34. Ferenczy, A., “Studies on the cytodynamics of human endometrial regeneration. I. Scanning electron microscopy.,” Am. J. Obstet. Gynecol., vol. 124, no. 1, pp. 64-74, Jan. 1976.10.1016/0002-9378(76)90013-2Search in Google Scholar

35. van der Flier, L. G. and Clevers, H., “Stem Cells, Self-Renewal, and Differentiation in the Intestinal Epithelium,” Annu. Rev. Physiol., vol. 71, no. 1, pp. 241-260, Mar. 2009.10.1146/annurev.physiol.010908.16314518808327Search in Google Scholar

36. Abe, H., “The mammalian oviductal epithelium: regional variations in cytological and functional aspects of the oviductal secretory cells.,” Histol. Histopathol., vol. 11, no. 3, pp. 743-68, Jul. 1996.Search in Google Scholar

37. Abe, H. and Oikawa, T., “Observations by scanning electron microscopy of oviductal epithelial cells from cows at follicular and luteal phases,” Anat. Rec., vol. 235, no. 3, pp. 399-410, Mar. 1993.10.1002/ar.10923503098430910Search in Google Scholar

38. Ghosh, A., Syed, S. M., and Tanwar, P. S., “In vivo genetic cell lineage tracing reveals that oviductal secretory cells self-renew and give rise to ciliated cells,” Development, vol. 144, no. 17, 2017.10.1242/dev.14998928743800Search in Google Scholar

39. Bryja, A. et al., “Carcinogenesis in mammalian oral mucosa from the perspective of biomedical research,” Med. Weter., vol. 73, no. 2, pp. 82-87, 2017.10.21521/mw.5641Search in Google Scholar

40. Bryja, A. et al., “The biomedical aspects of oral mucosal epithelial cell culture in mammals.,” J. Biol. Regul. Homeost. Agents, vol. 31, no. 1, pp. 81-85.Search in Google Scholar

41. Gargett, C. E., Schwab, K. E., Zillwood, R. M., Nguyen, H. P. T., and Wu, D., “Isolation and Culture of Epithelial Progenitors and Mesenchymal Stem Cells from Human Endometrium,” Biol. Reprod., vol. 80, no. 6, pp. 1136-1145, Jun. 2009.Search in Google Scholar

42. Maria, S., Kamath, V., Satelur, K., and Rajkumar, K., “Evaluation of transforming growth factor beta1 gene in oral submucous fibrosis induced in Sprague-Dawley rats by injections of areca nut and pan masala (commercial areca nut product) extracts,” J. Cancer Res. Ther., vol. 12, no. 1, p. 379, 2016.10.4103/0973-1482.14872927072267Search in Google Scholar

43. Nakamura, T., Inatomi, T., Sotozono, C., Amemiya, T., Kanamura, N., and Kinoshita, S., “Transplantation of cultivated autologous oral mucosal epithelial cells in patients with severe ocular surface disorders.,” Br. J. Ophthalmol., vol. 88, no. 10, pp. 1280-4, Oct. 2004.Search in Google Scholar

44. Kranc, W. et al., “‘Cell Migration’ Is the Ontology Group Differentially Expressed in Porcine Oocytes Before and After In Vitro Maturation: A Microarray Approach,” DNA Cell Biol., vol. 36, no. 4, pp. 273-282, 2017.10.1089/dna.2016.342528384068Open DOISearch in Google Scholar

45. Kranc, W. et al., “Molecular basis of growth, proliferation, and differentiation of mammalian follicular granulosa cells.,” J. Biol. Regul. Homeost. Agents, vol. 31, no. 1, pp. 1-8, 2017.Search in Google Scholar

46. Kranc, W. et al., “Expression Profile of Genes Regulating Steroid Biosynthesis and Metabolism in Human Ovarian Granulosa Cells—A Primary Culture Approach,” Int. J. Mol. Sci., vol. 18, no. 12, p. 2673, Dec. 2017.10.3390/ijms18122673575127529232835Open DOISearch in Google Scholar

47. Bhatia, S. et al., “Late mortality in survivors of autologous hematopoietic-cell transplantation: report from the Bone Marrow Transplant Survivor Study,” Blood, vol. 105, no. 11, pp. 4215-4222, Jun. 2005.Search in Google Scholar

48. Roura, S., Pujal, J.-M., Gálvez-Montón, C., and Bayes-Genis, A., “The role and potential of umbilical cord blood in an era of new therapies: a review,” Stem Cell Res. Ther., vol. 6, no. 1, p. 123, Dec. 2015.10.1186/s13287-015-0113-2448920426133757Search in Google Scholar

49. Santos, G. W., Yeager, A. M., and Jones, R. J., “Autologous Bone Marrow Transplantation,” Annu. Rev. Med., vol. 40, no. 1, pp. 99-112, Feb. 1989.10.1146/annurev.me.40.020189.0005312658765Search in Google Scholar

50. Bruno, B. et al., “A Comparison of Allografting with Autografting for Newly Diagnosed Myeloma,” N. Engl. J. Med., vol. 356, no. 11, pp. 1110-1120, Mar. 2007.Search in Google Scholar

51. Russell, N., Bessell, E., Stainer, C., Haynes, A., Das-Gupta, E., and Byrne, J., “Allogeneic haemopoietic stem cell transplantation for multiple myeloma or plasma cell leukaemia using fractionated total body radiation and high-dose melphalan conditioning.,” Acta Oncol., vol. 39, no. 7, pp. 837-41, 2000.10.1080/02841860075006359611145442Search in Google Scholar

52. Rybka, W. B. et al., “Hematopoietic progenitor cell content of vertebral body marrow used for combined solid organ and bone marrow transplantation.,” Transplantation, vol. 59, no. 6, pp. 871-4, Mar. 1995.10.1097/00007890-199503270-0001229585277701582Open DOISearch in Google Scholar

eISSN:
2544-3577
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Molekularbiologie, Biochemie