Uneingeschränkter Zugang

PANI/NaTaO3 composite photocatalyst for enhanced hydrogen generation under UV light irradiation


Zitieren

1. Kato, H. & Kudo, A. (1998). New tantalate photocatalysts for water decomposition into H2 and O2. Chem. Phys. Lett. 295, 487–492.10.1016/S0009-2614(98)01001-XSearch in Google Scholar

2. Ikeda, S., Fubuki, M., Takahara, Y.K. & Matsumura, M. (2006). Photocatalytic activity of hydrothermally synthesized tantalate pyrochlores for overall water splitting. Appl. Catal. A 300, 186–190. DOI: 10.1063/1.4928288.10.1063/1.4928288Open DOISearch in Google Scholar

3. Kato, H. & Kudo, A. (1999). Photocatalytic decomposition of pure water into H2 and O2 over SrTa2O6 prepared by a flux method. Chem. Lett. 28, 1207–1208. DOI: 10.1246/cl.1999.1207.10.1246/cl.1999.1207Open DOISearch in Google Scholar

4. Sayama, K., Arakawa, H. & Domen, K. (1996). Photocatalytic water splitting on nickel intercalated A4TaxNb6-xO17 (A=K, Rb). Catal. Today 28, 175–182.10.1016/0920-5861(95)00224-3Search in Google Scholar

5. Yoshioka, K., Petrykin, V., Kakihana, M., Kato, H. & Kudo, A. (2005). The relationship between photocatalytic activity and crystal structure in strontium tantalates. J. Catal. 232, 102–107. DOI: 10.1016/j.jcat.2005.02.021.10.1016/j.jcat.2005.02.021Open DOISearch in Google Scholar

6. Otsuka, H., Kim, K., Kouzu, A., Takimoto, I., Fujimori, H., Sakata, Y., Imamura, H., Matsumoto, T. & Toda, K. (2005). Photocatalytic performance of Ba5Ta4O15 to decomposition of H2O into H2 and O2. Chem. Lett. 34, 822–823. DOI: 10.1246/cl.2005.822.10.1246/cl.2005.822Open DOISearch in Google Scholar

7. Kurihara, T., Okutomi, H., Miseki, Y., Kato, H. & Kudo, A. (2006). Highly efficient water splitting over K3Ta3B2O12 photocatalyst without loading co-catalyst. Chem. Lett. 35, 274–275. DOI: 10.1246/cl.2006.274.10.1246/cl.2006.274Open DOISearch in Google Scholar

8. Ishihara, T., Nishiguchi, H., Fukamachi, K. & Takita, Y. (1999). Effects of acceptor doping to KTaO3 on photocatalytic decomposition of pure H2O. J. Phys. Chem. B. 103, 1–3.10.1021/jp983590kSearch in Google Scholar

9. Kudo, A. & Kato, H. (2000). Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting. Chem. Phys. Lett. 331, 373–377. DOI: 10.1016/S0009-2614(00)01220-3.10.1016/S0009-2614(00)01220-3Open DOISearch in Google Scholar

10. Iwase, A., Kato, H. & Kudo, A. (2009). The effect of alkaline earth metal ion dopants on photocatalytic water splitting by NaTaO3 powder. Chem. Sus. Chem. 2, 873–877. DOI: 10.1002/cssc.200900160.10.1002/cssc.200900160Search in Google Scholar

11. Mukthaa, B., Mahantaa, D., Patila, S. & Madras, G. (2007). Synthesis and photocatalytic activity of poly(3-hexylthiophene)/TiO2 composites. J. Solid State Chem. 180, 2986–2989. DOI: 10.1016/j.jssc.2007.07.017.10.1016/j.jssc.2007.07.017Open DOISearch in Google Scholar

12. Gangopadhyay, R. & De, A. (2000). Conducting polymer nanocomposites: A brief overview. Chem. Mater. 12, 608–622. DOI: 10.1021/cm990537f.10.1021/cm990537fOpen DOISearch in Google Scholar

13. Kandiel, T.A., Dillert, R. & Bahnemann, D.W. (2009). Enhanced photocatalytic production of molecular hydrogen on TiO2 modified with Pt-polypyrrole nanocomposites. Photochem. Photobiol. Sci. 8, 683–690. DOI: 10.1039/b817456c.10.1039/b817456cSearch in Google Scholar

14. Zhang, S., Chen, Q., Jing, D., Wang, Y. & Guo, L. (2012). Visible photoactivity and antiphotocorrosion performance of PdS-CdS photocatalysts modified by polyaniline. Int. J. Hydrogen. Energy 37, 791–796. DOI: 10.1016/j.ijhydene.2011.04.060.10.1016/j.ijhydene.2011.04.060Open DOISearch in Google Scholar

15. Zhang, S., Chen, Q., Wang, Y. & Guo, L. (2012). Synthesis and photoactivity of CdS photocatalysts modified by polypyrrole. Int. J. Hydrogen Energy 37, 13030–13036. DOI: 10.1016/j.ijhydene.2012.05.060.10.1016/j.ijhydene.2012.05.060Open DOISearch in Google Scholar

16. Ge, L., Han, C. & Liu, J. (2012). In situ synthesis and enhanced visible light photocatalytic activities of novel PANI–g-C3N4 composite photocatalysts. J. Mater. Chem. 22, 11843–11850. DOI: 10.1039/C2JM16241E.10.1039/216241Open DOISearch in Google Scholar

17. Radocici, M., Saponjic, Z., Jankovic, I.A., Ciric-Marjanovic, G., Ahrenkiel, S.P. & Comor, M.I. (2013). Improvements to the photocatalytic efficiency of polyaniline modified TiO2 nanoparticles. Appl. Catal. B 136–137, 133–139. DOI: 0.1016/j.apcatb.2013.01.007.10.1016/j.apcatb.2013.01.007Search in Google Scholar

18. Wei, J., Zhang, Q., Liu, Y., Xiong, R., Pan, C. & Shi, J. (2011). Synthesis and photocatalytic activity of polyaniline–TiO2 composites with bionic nanopapilla structure. J. Nanopart. Res. 13, 3157–3165. DOI: 10.1007/s11051-010-0212-z.10.1007/s11051-010-0212-zOpen DOISearch in Google Scholar

19. Gao, J., Li, S., Yang, W., Ni, G. & Bo, L.J. (2007). Synthesis of PANI/TiO2–Fe3+ nanocomposite and its photocatalytic property. Mater. Sci. 42, 3190–3196. DOI: 0.1007/s10853-006-1353-4.10.1007/s10853-006-1353-4Search in Google Scholar

20. Yavuz, A.G. & Gök, A. (2007). Preparation of TiO2/PANI composites in the presence of surfactants and investigation of electrical properties. Synth. Metals 157, 235–242. DOI: 10.1016/j.synthmet.2007.03.001.10.1016/j.synthmet.2007.03.001Open DOISearch in Google Scholar

21. Mozia, S., Tomaszewska, M., Kosowska, B., Grzmil, B., Morawski, A.W. & Kałucki, K. (2005). Decomposition of nonionic surfactant on a nitrogen-doped photocatalyst under visible-light irradiation. Appl. Catal. B 55, 195–200. DOI: 10.1016/j.apcatb.2004.09.019.10.1016/j.apcatb.2004.09.019Open DOISearch in Google Scholar

22. Li, F.F., Liu, D.R., Gao, G.M., Xue, B. & Jiang, Y.S. (2015). Improved visible-light photocatalytic activity of NaTaO3 with perovskite-like structure via sulfur anion doping. Appl. Catal. B 166–167, 104–111. DOI: 10.1016/j.apcatb.2014.10.049.10.1016/j.apcatb.2014.10.049Open DOISearch in Google Scholar

23. Yang, J., Wang, X., Wang, X., Jia, R. & Huang, J. (2010). Preparation of highly conductive CNTs/polyaniline composites through plasma pretreating and in-situ polymerization. J. Phys. Chem. Sol. 71, 448–452. DOI: 10.1016/j.jpcs.2009.12.008.10.1016/j.jpcs.2009.12.008Open DOISearch in Google Scholar

24. Lin, W.H. (2006). NaTaO3 photocatalysts of different crystalline structures for water splitting into H2 and O2. Appl. Phys. Lett. 89, 211904. DOI: 10.1063/1.2396930.10.1063/1.2396930Search in Google Scholar

25. Lan, N.T., Phan, L.G., Hoang, L.H., Huan, B.D., Hong, L.V., Anh, T.X. & Chinh, N. (2016). Hydrothermal Synthesis, Structure and Photocatalytic Properties of La/Bi Co-Doped NaTaO3. Mater. Trans. 57(1), 1–4. DOI: 10.2320/matertrans.MA201517.10.2320/matertrans.201517Open DOISearch in Google Scholar

26. Wang Q., Lian, J., Li, J., Wang, R., Huang, H., Su, B. & Lei, Z. (2015). Highly efficient photocatalytic hydrogen production of flower-like cadmium sulfide decorated by histidine. Sci. Rep. 5, 13593–1396. DOI: 10.1038/srep13593.10.1038/srep13593Open DOISearch in Google Scholar

27. Ansari, M.O., Khan, M.M., Ansari, S.A., Lee, J. & Cho, M.H. (2014). Enhanced thermoelectric behavior and visible light activity of Ag@TiO2/polyaniline nanocomposite synthesized by biogenic-chemical route. RSC Adv. 4, 23713–23719. DOI: 10.1039/c4ra02602k.10.1039/c4ra02602kOpen DOISearch in Google Scholar

28. Xing, Z., Chen, Z., Zong, X. & Wang, L. (2014). A new type of carbon nitride-based polymer composite for enhanced photocatalytic hydrogen production. Chem. Commun. 50, 6762–6764. DOI: 10.1039/c4cc00397g.10.1039/c4cc00397gOpen DOISearch in Google Scholar

29. Kato, H. & Kudo, A. (2001). Water splitting into H2 and O2 on alkali tantalate photocatalysts ATaO3 (A = Li, Na, and K). J. Phys. Chem. B 105, 4285–4292. DOI: 10.1021/jp004386b.10.1021/jp004386bOpen DOISearch in Google Scholar

30. Hu, C.C., Tsai, C.C. & Teng, H. (2009). Structure characterization and tuning of perovskite-like NaTaO3 for applications in photoluminescence and photocatalysis. J. Am. Ceram. Soc. 92(2), 460–466. DOI: 10.1111/j.1551-2916.2008.02869.x.10.1111/j.1551-2916.2008.02869.xOpen DOISearch in Google Scholar

eISSN:
1899-4741
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Biotechnologie, Chemieingenieurwesen, Verfahrenstechnik