Zitieren

1. Vadivel Murugan, A., Samuel, V. & Ravi, V. (2006). Synthesis of nanocrystalline anatase TiO2 by microwave hydrothermal method. Mater. Lett. 60, 479-480. DOI: 10.1016/j. matlet.2005.09.017.Search in Google Scholar

2. Figgemeier, E., Kylberg, W. & Constable, E. (2007). Titanium dioxide nanoparticles prepared by laser pyrolysis: synthesis and photocatalytic properties. Appl. Surf. Sci. 254, 1037-1041. DOI: 10.1016/j.apsusc.2007.08.036.10.1016/j.apsusc.2007.08.036Search in Google Scholar

3. Su, C., Hong, B.Y. & Tseng, C.M. (2004). Sol-gel preparation and photocatalysis of titanium dioxide. Catal. Today 96, 119-126. DOI: 10.1016/j.cattod.2004.06.132.10.1016/j.cattod.2004.06.132Search in Google Scholar

4. Li, Y., White, T.J. & Lim, S.H. (2004). Low-temperature synthesis and microstructural control of titania nano-particles. J. Solid State Chem. 177, 1372-1381. DOI: 10.1016/j. jssc.2003.11.016.Search in Google Scholar

5. Billik, P. & Plesch, G. (2007). Mechanochemical synthesis of anatase and rutil nanopowders from TiOSO4. Mater. Lett. 61, 1183-1186. DOI: 10.1016/j.matlet.2006.06.080.10.1016/j.matlet.2006.06.080Search in Google Scholar

6. Ying, L., Hon, L.S., White, T., Withers, R. & Hai, L.B. (2003). Controlled Nanophase Development in Photocatalytic Titania. Mater. Trans. 44 (7), 1328-1332. DOI: 10.2320/ matertrans.44.1328.10.2320/matertrans.44.1328Search in Google Scholar

7. Qamar, M., Yoon, C.R., Park, K., Kim, D.H., Lee, K.S., Lee, W.J. & Kim, S.J. (2008). Preparation and photocatalytic activity of nanotubes obtained from titanium dioxide. Catal. Today 131, 3-14. DOI: 10.1016/j.cattod.2007.10.015.10.1016/j.cattod.2007.10.015Search in Google Scholar

8. Al-Salim, N.I., Bagshaw, S.A., Bittar, A., Kemmit, T., McQuillan, A.J., Mills, A.M. & Ryan, M.J. (2000). Characterization and activity of sol-gel-prepared TiO2 photocatalysts modifi ed with Ca, Sr or Ba ion additives. J. Mater. Chem. 10, 2358-2363. DOI: 10.1039/B004384M.10.1039/b004384mSearch in Google Scholar

9. Ito, S., Inoue, S., Kawada, H., Hara, M., Iwasaki, M. & Tada, H. (1999). Low-Temperature Synthesis of Nanometer- Sized Crystalline TiO2 Particles and Their Photoinduced Decomposition of Formic Acid. J. Colloid Interface Sci. 216, 59-64. DOI: 10.1006/jcis.1999.6275.10.1006/jcis.1999.627510395762Search in Google Scholar

10. Colmenares, J.C., Aramend, M.A., Marinas, A. & Urbano, F.J. (2006). Synthesis, characterization and photocatalytic activity of different metal-doped titania systems. Appl. Catal. A: Gen. 306, 120-127. DOI: 10.1016/j.apcata.2006.03.046.10.1016/j.apcata.2006.03.046Search in Google Scholar

11. Mele, G., del Sole, R., Vasapollo, G., Garcia-Lopez, E., Palmisano, L., Jun, L., Słota, R. & Dyrda, G. (2007). TiO2-based photocatalysts impregnated with metallo-porphyrins employed for degradation of 4-nitrophenol in aqueous solutions: Role of metal and macrocycle. Res. Chem. Intermed. 33, 443-448. DOI: 10.1163/156856707779238649.10.1163/156856707779238649Search in Google Scholar

12. Mele, G., Garcia-Lopez, E., Palmisano, L., Dyrda, G. & Słota, R. (2007). Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 impregnated with lanthanide double-decker phthalocyanine complexes. J. Phys. Chem. C 111, 6581-6588. DOI: 10.1021/jp070529j.10.1021/jp070529jSearch in Google Scholar

13. Zhao, X., Li, Z., Chen, Y., Shi, L. & Zhu, Y. (2008). Enhancement of photocatalytic degradation of polyethylene plastic with CuPc modifi ed TiO2 photocatalyst under solar light irradiation. Appl. Surf. Sci. 254, 1825-1829. DOI: 10.1016/j. apsusc.2007.07.154.Search in Google Scholar

14. Fa, W. & Zan, L. (2008). Solid-phase photocatalytic degradation of polystyrene with TiO2 modifi ed by iron (II) phthalocyanine. Appl. Catal. B: Environ. 79, 216-223. DOI: 10.1016/j.apcatb.2007.10.018.10.1016/j.apcatb.2007.10.018Search in Google Scholar

15. Mele, G., del Sole, R., Vasapollo, G., Garcia-Lopez, E., Palmisano, L. & Schiavello, M. (2003). Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 impregnated with functionalized Cu(II)- porphyrin or Cu(II)-phthalocyanine. J. Catal. 217, 334-342. DOI: 10.1016/S0021-9517(03)00040-X.10.1016/S0021-9517(03)00040-XSearch in Google Scholar

16. Zuo, P. & Li, C. (2006). Mechanism of squarylium cyanine and Ru(dcbpy)2(NCS)2 co-sensitization of colloidal TiO2. J. Photoch. Photobio. A: Chem. 183, 138-145. DOI: 10.1016/j. jphotochem.2006.03.007.Search in Google Scholar

17. Słota, R., Dyrda, G., Galbas, M. & Mele, G. (2014). Hybrid photocatalysts with a TiO2 matrix sensitized with lanthanide phthalocyanines. Chemik 68 (4), 385-390.Search in Google Scholar

18. Marcì, G., García-López, E., Mele, G., Palmisano, L., Dyrda, G. & Słota, R. (2009) Comparison of the photocatalytic degradation of 2-propanol in gas-solid and liquid-solid systems by using TiO2 - LnPc2 hybrid powders. Catal. Today 143, 203-210. DOI: 10.1016/j.cattod.2008.12.029.10.1016/j.cattod.2008.12.029Search in Google Scholar

19. Wang, C., Li, J., Mele, G., Yang, G.M., Zhang, F.X., Palmisano, L. & Vasapollo, G. (2007). Effi cient degradation of 4-nitrophenol by using functionalized porphyrin-TiO2 photocatalysts under visible irradiation. Appl. Catal. B-Environ. 76, 218-226. DOI: 10.1016/j.apcatb.2007.05.028.10.1016/j.apcatb.2007.05.028Search in Google Scholar

20. Duan, M.V., Li, J., Mele, G., Wang, C., Lu, X.F., Vasapollo, G. & Zhang, F.X. (2010). Photocatalytic Activity of Novel Tin Porphyrin/TiO2 Based Composites. J. Phys. Chem. C. 114, 7857-7862. DOI: 10.1021/jp911744a.10.1021/jp911744aSearch in Google Scholar

21. Wetchakun, N. & Phanichphant, S. (2008). Effect of temperature on the degree of anatase-rutile transformation in titanium dioxide nanoparticles synthesized by the modifi ed sol-gel method. Curr. Appl. Phys. 8, 343-346. DOI: 10.1016/j. cap.2007.10.028.Search in Google Scholar

22. Park, S.D., Cho, Y.H., Kim, W.W. & Kim, S. (1999). Understanding of Homogeneous Spontaneous Precipitation for Monodispersed TiO2 Ultrafi ne Powders with Rutile Phase around Room Temperature. J. Solid State Chem. 146, 230-236. DOI: 10.1006/jssc.1999.8342.10.1006/jssc.1999.8342Search in Google Scholar

23. Wang, X.H., Li, J.G. & Kamiyama, H. (2006). Fe-doped TiO2 nanopowders by oxidative pyrolysis of organometallic precursors in induction thermal plasma: synthesis and structural characterization. Thin Solid Films 506/507, 278-282. DOI: 10.1016/j.tsf.2005.08.069.10.1016/j.tsf.2005.08.069Search in Google Scholar

24. Mishra, P.R. & Srivastava, O.N. (2008 June). On the synthesis, characterization and photocatalytic applications of nanostructured TiO2. Bull. Mater. Sci. 31 (3), 545-550. DOI: 10.1007/s12034-008-0085-2.10.1007/s12034-008-0085-2Search in Google Scholar

25. Mele, G., Ciccarella, G., Vasapollo, G., García-López, E., Palmisano, L. & Schiavello, M. (2002). Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 samples impregnated with Cu(II)- phthalocyanine. Appl. Catal. B. 38, 309-319. DOI: 10.1016/ S0926-3373(02)00060-7.10.1016/S0926-3373(02)00060-7Search in Google Scholar

26. Słota, R., Dyrda, G., Szczegot, K., Mele, G. & Pio, I. (2011). Photocatalytic activity of nano and microcrystalline TiO2 hybrid systems involving phthalocyanine or porphyrin sensitizers. Photochem. Photobiol. Sci. 10, 361-366. DOI: 10.1039/c0pp00160k.10.1039/C0PP00160KSearch in Google Scholar

27. Iliev, V. & Ilieva, A. (1995). Oxidation and photooxidation of sulfur-containing compounds in the presence of water soluble phthalocyanine complexes. J. Mol. Cat. A 103, 147-153. DOI: 10.1016/1381-1169(95)00139-5.10.1016/1381-1169(95)00139-5Search in Google Scholar

28. Słota, R., Dyrda, G. & Szczegot, K. (2008). Sulfur dioxide oxidation catalyzed by photosensitized ytterbium diphthalocyanine. Catal. Lett. 126, 247-252. DOI: 10.1007/s10562-008-9609-z. 10.1007/s10562-008-9609-zSearch in Google Scholar

eISSN:
1899-4741
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Biotechnologie, Chemieingenieurwesen, Verfahrenstechnik