Uneingeschränkter Zugang

Anticorrosive efficiency of alkyd resin-based coatings containing Mg–Zn–Fe mixed oxide-based pigments


Zitieren

1. Kalendova A. et al. Anticorrosion efficiency of zinc-filled epoxy coatings containing conducting polymers and pigments, Progress in Organic Coatings2015, 78, 1-20.10.1016/j.porgcoat.2014.10.009Search in Google Scholar

2. Benda P., Kalendova A. Anticorrosion properties of pigments based on ferrite coated zinc particle, Physica Procedia2013, 44, 185-194.10.1016/j.phpro.2013.04.023Search in Google Scholar

3. Kos I., Schwarz I. G., Suton K. Influence of Warp Density on Physical-mechanical Properties of Coated Fabric, Procedia Engineering2014, 69, 881-889.10.1016/j.proeng.2014.03.066Search in Google Scholar

4. Kohl M., Kalendova A. Effect of polyaniline salts on the mechanical and corrosion properties of organic protective coatings, Progress in Organic Coatings2015, 86, 96-107.10.1016/j.porgcoat.2015.04.006Search in Google Scholar

5. Anez L. et al. Gas and liquid permeability in nano composites get: Comparison of Knudsen and Klinkenberg correction factors, Microporous and Mesoporous Materials2014, 200, 79-85.10.1016/j.micromeso.2014.07.049Search in Google Scholar

6. Marzi T. Nanostructured materials for protection and reinforcement of timber structures: A review and future challenges, Construction and Building Materials2015, 97, 119-130.10.1016/j.conbuildmat.2015.07.016Search in Google Scholar

7. Šadauskiene J. et al.: The impact of the exterior painted thin-layer render’s water vapour and liquid water permeability on the moisture state of the wall insulating system, Construction and Building Materials2009, 23 (8), 2788-2794.10.1016/j.conbuildmat.2009.03.010Search in Google Scholar

8. Ulbrich M., Kalendova A. Properties of Organic Coatings with Nonisometric Ferrite particles, Physics Procedia2013, 44, 247-255.10.1016/j.phpro.2013.04.030Search in Google Scholar

9. Du J. et al. Simulation of the neck prowth of non-isometric biosphere during initial sintering, Acta Metallurgica Sinica (English letters)2009, 22 (4), 263-274.10.1016/S1006-7191(08)60098-8Search in Google Scholar

10. Singh S. et al. Magnetodielectrric effect in BaTiO3/ZnFe2O4 core/shell nanoparticles, Journal of Alloys and Compounds2014, 587, 437-441.10.1016/j.jallcom.2013.10.136Search in Google Scholar

11. Liu C. et al. Structural analysis and cheracterization of doped spinel CO2−xMxTiO4 (M = Mg2+, Mn2+, Cu2+ and Zn2+) coated mica composite. Ceramions International2015, 41, 5537-5546.10.1016/j.ceramint.2014.12.130Search in Google Scholar

12. Naredi R., Mahdavian M., Darvish A. Electrochemical examining behavior of epoxy coating incorporation zinc-free phosphate-based anticorrosion pigment, Progress in Organic Coatings2016, 76, 302-306.10.1016/j.porgcoat.2012.09.026Search in Google Scholar

13. Darvish A., Naredi R., Attar M.M. The impact of pigment volume concentracion on the protective performance of polyurethane coating with second generation of phosphate based anticorrosion pigment, Progress in Organic Coatings2014, 77, 1768-1773.10.1016/j.porgcoat.2014.05.025Search in Google Scholar

14. Sadek M.E.H. et al. Nano Mg1−xNixAl2O4 spinel pigments for advanced applications, Spectrochemica Acta Part A: Molecular and Biomolecular Spectroscopy2014, 125, 353-358.10.1016/j.saa.2014.01.115Search in Google Scholar

15. Li J. et al. In-situ AFM and EIS study of a solventborne alkyd coating with nanoclay for corrosion protection of carbon steel, Progress in Organic Coatings2015, 87, 179-188.10.1016/j.porgcoat.2015.06.003Search in Google Scholar

16. Gergely A et al.. Corrosion protection with zinc-rich epoxy paint coatings embedded with various amounts of highly dispersed polypyrrole-deposited alumina monohydrate, Progress in Organic Coatings2013, 76, 17-32.10.1016/j.porgcoat.2012.08.005Search in Google Scholar

17. Sickafus K.E., Wills J.M., Grimes N.W. Structure of spinel, Journal of the American Ceramic Society1999, 82 (12), 3279-3292.10.1111/j.1151-2916.1999.tb02241.xSearch in Google Scholar

18. Giannakas A.E. et al. Surface properties, textural features and catalytic performance for NO + CO abatement of spinels MAl2O4 (M = Mg, Co and Zn) developed by reverse and bicontinous microemulsion method, Applied Surface Science2007, 253 (16), 6969-6979.10.1016/j.apsusc.2007.02.031Search in Google Scholar

19. Huang C.L. et al. Low-loss microwave dielectrics in spinel-structured (Mg1−xNix)Al2O4 solid solutions, Journal of the American Ceramic Society2010, 93 (7), 1999-2003.10.1111/j.1551-2916.2010.03690.xSearch in Google Scholar

20. Jacob K.T., Alcock C.B. Activities and their relation to cation distrubution in NiAl2O4 MgAl2O4 spinel solid solutions, Journal of Solid State Chemistry1977, 20 (1), 79-88.10.1016/0022-4596(77)90053-6Search in Google Scholar

21. Singh Yadav R. Impact of Nd3+ in CoFe2O4 spinel ferrite nanoparticles on cation distrubution, structural and magnetic properties, Journal of Magnetism and Magnetic Materials2016, 339, 109-117.10.1016/j.jmmm.2015.09.055Search in Google Scholar

22. Abdur Rehman M., Yusoff I., Alias Y. Fluoride adsorption by doped and un-doped magnetic ferrites CuClxFe2−xO4: Preparation, characterization, optimization and modeling for effectual remediation technologies, Journal of Hazardous Materials2015, 299, 316-324.10.1016/j.jhazmat.2015.06.030Search in Google Scholar

23. Porta P., Stone F.S., Turner R.G. The distribution of nickel ions among octahedral and tetrahedral sites in NiAl2O4, MgAl2O4 solid solutions, Journal of Solid state Chemistry1974, 11 (2), 135-147.10.1016/0022-4596(74)90108-XSearch in Google Scholar

24. Sun K. Cation distribution amd magnetic property of Ti/Sn - substituted manganese-zinc ferrites, Journal of Alloys and Compounds2015, 650, 363-369.10.1016/j.jallcom.2015.07.258Search in Google Scholar

25. Fernandez A.L., de Pablo L. Formation and the colour developement in cobalt spinel pigments. Pigment & Resin Technology2002, 31 (6), 350-356.10.1108/03699420210449043Search in Google Scholar

26. Zawrah M.F., Mamaad H., Meky S. Synthesis and characterization of nano MgAl2O4 spinel by the co-precipitated method, Ceramic International2007, 33 (6), 969-978.10.1016/j.ceramint.2006.02.015Search in Google Scholar

27. Neto J.B.R., Moreno R. Reological behaviour of kaolin/talc/alumina suspensions for manufacturing cordierite foams, Applied Clay Science2007, 37 (1-2), 157-166.10.1016/j.clay.2006.12.007Search in Google Scholar

28. Li Z. et al. Fabric effect on hydraulic conductivity of kaolin under different chemical and biochemical conditions, Soils and Foundations2013, 53 (5), 680-691.10.1016/j.sandf.2013.08.006Search in Google Scholar

29. Veselý D., Kalendová A. Anticorrosion efficiency of ZnxMgyAl2O4 core–shell spinels in organic coatings, Progress in Organic Coatings2008, 62, 5–20.10.1016/j.porgcoat.2007.09.008Search in Google Scholar

30. Jotti K.J., Palanivelu K. Facile fabrication of core-shell Pr6O11-ZnO modified silane coatings for anti-corrosion applications, Applied Surface Science2014, 288, 60-68.10.1016/j.apsusc.2013.09.112Search in Google Scholar

31. Kalendova A., Vesely D. Study of the anticorrosive efficiency of zincite and periclase-based core-shell pigments in organic coatings, Progress in Organic Coatings2009, 64 (1), 5-19.10.1016/j.porgcoat.2008.07.003Search in Google Scholar

32. Montemor M.F. Functional and smart coatings for corrosion protection: A review of recent advances, Surface and Coatings Technology2014, 258, 17-37.10.1016/j.surfcoat.2014.06.031Search in Google Scholar

33. Kalendova A., Rysanek P., Nechvilova K. Investigation of the anticorrosive efficiency of ferrites Mg1−xZnxFe2O4 with different particle morphology and chemical composition in epoxy-ester resin-based coatings, Progress in Organic Coatings2015, 86, 147-163.10.1016/j.porgcoat.2015.05.009Search in Google Scholar

34. Vesely D., Kalendova A., Manso M. V. Properties of calcined kaolins in anticorrosion paints depending on PVC, chemical composition and shape of particles, Progress in Organic Coatings2012, 74, 82-91.10.1016/j.porgcoat.2011.11.017Search in Google Scholar

35. Kalendova A. Effect of surface treatment of pigment particles with polypyrrole and polyaniline phosphate on their corrosion inhibiting properties in organic coatings, Progress in Organic Coatings2014, 77 (9), 1465-1483.10.1016/j.porgcoat.2014.04.012Search in Google Scholar

36. Singh A.P. et al. Fatty acid based waterborne air drying epoxy ester resin for coating applications, Progress in Organic Coatings2015, 87, 95-105.10.1016/j.porgcoat.2015.05.012Search in Google Scholar

37. Gao X.Z., Liu H.J., Cheng F. Thermoresponsive polyaniline nanoparticles: Preparation, characterization, and their potencial application in waterborne anticorrosion coating, Chemical Engineering Journal2016, 283, 682-691.10.1016/j.cej.2015.08.015Search in Google Scholar

38. Kalendova A. Methods for testing and evaluating the flash corrosion. Progress in Organic Coatings2002, 44 (3), 201-209.10.1016/S0300-9440(02)00014-0Search in Google Scholar

39. Conradi M. et al. Mechanical and anticorrosion properties of nanosilica-filled epoxy-resin composite coating. Applied Surface Science2014, 292, 432-437.10.1016/j.apsusc.2013.11.155Search in Google Scholar

40. Czech office for standards, metrology and testing. 2007 Czech technical standard: Coating compositions. Determination of hardness of painting film by pendulum instrumen. CSN 67 3076. Praha.Search in Google Scholar

41. Hao Y., Liu F., Man E. Inhibite Behaviour and Mechanism of a Ferrite Inhibition Pigment en Epoxy Paints, Journal of the Electrochemical Society2012, 159 (9), C403-C410.10.1149/2.049209jesSearch in Google Scholar

42. Lin G. et al. Some nanocomposites based on a glycerol-derived alkyd resin and layered silicates, Molecular Crystals and Liquid Crystals2008, 483 (1), 33-48.10.1080/15421400801898066Search in Google Scholar

43. Naderi R., Attar M.M. Electrochemical study of protective behavior of organic coating pigmented with zinc aluminium phosphate as a modified zinc phosphate at different pigment volume concentrations, Progress in Organic Coatings2009, 66 (3), 314-320.10.1016/j.porgcoat.2009.08.009Search in Google Scholar

44. Perra D.Y. Effect of pigmentation on organic coating characteristics, Progress in Organic Coatings2004, 50 (4), 247-262.10.1016/j.porgcoat.2004.03.002Search in Google Scholar

45. Bierwagen G.P., Hay T.K. The reduced pigment volume concentration as an important parameter in interpreting and predicting the properties of organic coatings, Progress in Organic Coatings1975, 3 (4), 281-303.10.1016/0300-9440(75)80011-7Search in Google Scholar

46. Gowri S., Balakrishman K. The effect of the PVC/CPVC ratio on the corrosion resistance properties of organic coating, Progress in Organic Coatings1994, 23 (4), 363-377.10.1016/0033-0655(94)87005-5Search in Google Scholar

47. Langer E. et al. Self-stratifying coatings containing barrier and active anticorrisive pigments, Progress in Organic Coatings2011, 71, 162-166.10.1016/j.porgcoat.2011.01.016Search in Google Scholar

48. Ahmed N.M. et al. Novel anticorrosive pigments based on waste material for corrosion protection of reinforced concrete steel, Construction and Building Materials2015, 98, 399-396.10.1016/j.conbuildmat.2015.08.111Search in Google Scholar

49. Deyab M.A. Effect of carbon nano-tubes on the corrosion resistance of alkyd coating immersed in sodium chloride solution, Progress in Organic Coatings2015, 85, 146-150.10.1016/j.porgcoat.2015.04.003Search in Google Scholar

50. Lamanna M.E. Synthesis of an organic semiconductor by polimerization of 3-amino-1,2,4-triazole, Reactive and Functional Polymers2009, 69 (10), 759-765.10.1016/j.reactfunctpolym.2009.06.005Search in Google Scholar

51. Liu L. et al. The evaluation of thermal performance of cool coatings colored with high mera-infrared reflective nano-brown inorganic pigments: Magnesium doped ZnFe2O4 compounds, Solar Energy2015, 113, 48-56.10.1016/j.solener.2014.12.034Search in Google Scholar

52. Emira H. S,. Abdel-Mohsen F.F. The dependence of the corrosion protection of water-borne paints on the concentration of the anticorrosive pigment, Pigment & Resin technology2003, 32 259-263.10.1108/03699420310481604Search in Google Scholar

eISSN:
1804-1213
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Chemieingenieurwesen, Materialwissenschaft, Keramik und Glas