Uneingeschränkter Zugang

Corrosion behaviour of steel CSN 422707.9 in concentrated synthetic bentonite pore water


Zitieren

1. Smart, N. R. Anaerobic Corrosion of Carbon Steel and Cast Iron in Artifi cial Groundwaters: Part 1 - Electrochemical Aspects. Corrosion 2002, 58 (7), 547-559.10.5006/1.3277646Search in Google Scholar

2. Beverskog, B. Revised pourbaix diagrams for iron at 25-300 °C. Corros. Sci. 1996, 38 (12), 2121-2135.Search in Google Scholar

3. Linnenbom, V. J. The Reaction between lron and Water in the Absence of Oxygen. J. Electrochem. Soc. 1958, 105 (6), 322-324.Search in Google Scholar

4. Refait, Ph. The anionic species competition in iron aqueous corrosion: Role of various green rust compounds. Corros. Sci. 1997, 39 (9), 1699-1710.Search in Google Scholar

5. Guilbaud, R. Surface charge and growth of sulphate and carbonate green rust in aqueous media. Geochim. Cosmochim. Acta 2013, 108, 141-153.10.1016/j.gca.2013.01.017Search in Google Scholar

6. Refait, Ph. The oxidation of ferrous hydroxide in chloridecontaining aqueous media and pourbaix diagrams of green rust one. Corros. Sci. 1993, 34 (5), 797-819.Search in Google Scholar

7. Ishikawa, T. Formation of magnetite in the presence of ferric oxyhydroxides. Corros. Sci. 1998, 40 (7), 1239-1251.Search in Google Scholar

8. Tamaura, Y. Transformation of γ-FeO(OH) to Fe3O4 by adsorption of iron(II) ion on γFeO(OH). J. Chem. Soc. 1983, 189-194.10.1039/DT9830000189Search in Google Scholar

9. Lee, C. T. The infl uence of groundwater anions on the impedance behaviour of carbon steel corroding under anoxic conditions. Electrochim. Acta 2006, 51 (8-9), 1558-1568.10.1016/j.electacta.2005.02.115Search in Google Scholar

10. Carlson, L. Experimental studies of the interactions between anaerobically corroding iron and bentonite. Physics and Chemistry of the Earth 2007, 32 (1-7), 334-345.10.1016/j.pce.2005.12.009Search in Google Scholar

11. Martin, F. A. Corrosion of iron and low alloyed steel within a water saturated brick of clay under anaerobic deep geological disposal conditions: An integrated experiment. J. Nucl. Mater. 2008, 379 (1-3), 80-90.Search in Google Scholar

12. Schlegel, M. L. Metal corrosion and argillite transformation at the water-saturated, high-temperature iron-clay interface: A microscopic-scale study. Appl. Geochem.2008, 23 (9), 2619-2633.Search in Google Scholar

13. Refait, Ph. Electrochemical formation of carbonated corrosion products on carbon steel in deaerated solutions. Electrochim. Acta 2012, 79 (30), 210-217.10.1016/j.electacta.2012.06.108Search in Google Scholar

14. Legrand, L. Study of oxidation products formed on iron in solutions containing bicarbonate/carbonate. Electrochim. Acta 2000, 46 (1), 111-117.10.1016/S0013-4686(00)00563-6Search in Google Scholar

15. Legrand, L. Electroanalytical and Kinetic Investigations on the Carbonate Green Rust-Fe(III) Redox System. J. Electrochem. Soc. 2003, 150 (2), B45-B51.Search in Google Scholar

16. Pitter, P. Hydrochemie, 5th ed.; VŠCHT: Praha, 2015.Search in Google Scholar

17. Han, J. A coupled electrochemical-geochemical model of corrosion for mild steel in high-pressure CO2-saline environments. International Journal of Greenhouse Gas Control 2011, 5 (4), 777-787.10.1016/j.ijggc.2011.02.005Search in Google Scholar

18. Stoulil, J. Infl uence of temperature on corrosion rate and porosity of corrosion products of carbon steel in anoxic bentonite environment. J. Nucl. Mater. 2013, 443 (1-3), 20-25.Search in Google Scholar

19. Andrade, C., Gonzales, J. A. Quantitative measurements of corrosion rate of reinforcing steels embedded in concrete using polarization resistance measurements, Werkstoffe und Korrosion 1978, 29, 515-519.10.1002/maco.19780290804Search in Google Scholar

eISSN:
1804-1213
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Chemieingenieurwesen, Materialwissenschaft, Keramik und Glas