Uneingeschränkter Zugang

Evaluation of the Contact Angle of Hydrophobised Lightweight-Aggregate Concrete with Sewage Sludge


Zitieren

[1] Directive 86/278/EEC. Council directive on the protection of the environment and in particular of the soil, when sewage sludge is used in agriculture. Official Journal of the European Communities. 1986;L(181):6-12. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:31986L0278.Search in Google Scholar

[2] Wos P, Dyka M, Korniluk M, Lagod G. Wpływ modernizacji urządzeń miejskiej oczyszczalni ścieków „Hajdów” na przebieg procesu oczyszczania ścieków oraz ilość powstających odpadów [Influence of “Hajdow” wastewater treatment plant modernization on wastewater purification process and amount of emerging waste]. Proc ECOpole. 2007;1(1-2):277-281.Search in Google Scholar

[3] Werle S, Dudziak M. Gaseous fuels production from dried sewage sludge via air gasification. Waste Manage Res. 2014;32(7):601-607. DOI: 10.1177/0734242X14536460.10.1177/0734242X14536460Search in Google Scholar

[4] Werle S, Wilk RK. A review of methods for the thermal utilization of sewage sludge: The Polish perspective. Renew Ener. 2010;35(9):1914-1919. DOI: 10.1016/j.renene.2010.01.019.10.1016/j.renene.2010.01.019Search in Google Scholar

[5] Song U, Lee EJ. Environmental and economical assessment of sewage sludge compost application on soil and plants in a landfill. Resour Conser Recyc. 2010;54(12):1109-1116. DOI: 10.1016/j.resconrec.2010.03.005.10.1016/j.resconrec.2010.03.005Search in Google Scholar

[6] Frac M, Oszust K, Lipiec J, Jezierska-Tys S, Oluchi Nwaichi E. Soil microbial functional and fungal diversity as influenced by municipal sewage sludge accumulation. Int J Environ Res Pub Health. 2014;11:8891-8908. DOI: 10.3390/ijerph110908891.10.3390/ijerph110908891Search in Google Scholar

[7] Singh RP, Agrawal M. Potential benefits and risks of land application of sewage sludge. Waste Manage. 2008;28(2):347-358. DOI: 10.1016/j.wasman.2006.12.010.10.1016/j.wasman.2006.12.010Search in Google Scholar

[8] Gunning PJ, Hills CD, Carey PJ. Production of lightweight aggregate from industrial waste and carbon dioxide. Waste Manage. 2009;29(10):2722-2728. DOI: 10.1016/j.wasman.2009.05.021.10.1016/j.wasman.2009.05.021Search in Google Scholar

[9] Gonzáles-Corrochano B, Alonso-Azcárate J, Rodas M, Luque FJ, Barrenechea JF. Microstructure and mineralogy of lightweight aggregates produced from washing aggregate sludge, fly ash, and used motor oil. Cem Concr Composit. 2010;32(9):694-707. DOI: 10.1016/j.cemconcomp.2010.07.014.10.1016/j.cemconcomp.2010.07.014Search in Google Scholar

[10] Suchorab Z, Barnat-Hunek D, Franus M. Analysis of heat-moisture properties of hydrophobised gravelite-concrete with sewage sludge. Proc ECOpole (in print).Search in Google Scholar

[11] Lee TC, Lin KL, Su XW, Lin KK. Recycling CMP sludge as a resource in concrete. Constr Build Mater. 2012;30:243-251. DOI: 10.1016/j.conbuildmat.2011.11.019.10.1016/j.conbuildmat.2011.11.019Search in Google Scholar

[12] Tay JH, Show KY. Resources recovery of sludge as a building and construction material - a future trend in sludge management. Water Sci Technol. 1997;36(11):259-266. DOI: 10.1016/S0273-1223(97)00692-6.10.1016/S0273-1223(97)00692-6Search in Google Scholar

[13] Youm KS, Jeong YJ, Han ESH, Yun TS. Experimental investigation on annual changes in mechanical properties of structural concretes with various types of lightweight aggregates. Constr Build Mater. 2014;73:442-451. DOI: 10.1016/j.conbuildmat.2014.09.044.10.1016/j.conbuildmat.2014.09.044Search in Google Scholar

[14] Monteiro SN, Alexander J, Margem JI, Sánchez R, Vieira CMF. Incorporation of sludge waste from water treatment plant into red ceramic. Constr Build Mater. 2008;22(6)1281-1287. DOI: 10.1016/j.conbuildmat.2007.01.013.10.1016/j.conbuildmat.2007.01.013Search in Google Scholar

[15] Aldred JM, Swaddiwudhipong S, Lee SL, Wee TH. The effect of initial moisture content on water transport in concrete containing a hydrophobic admixture. Mag Concr Res. 2001;53(2):127-134. DOI: 10.1680/macr.53.2.127.39509.10.1680/macr.2001.53.2.127Search in Google Scholar

[16] Demirba R, Gül R. The effects of expanded perlite aggregate, silica fume and fly ash on the thermal conductivity of lightweight concrete. Cem Concr Res. 2003;33(5):723-727. DOI:10.1016/S0008-8846(02)01032-3.10.1016/S0008-8846(02)01032-3Search in Google Scholar

[17] Kim HK, Jeon JH, Lee HK. Workability, and mechanical, acoustic and thermal properties of lightweight aggregate concrete with a high volume of entrained air. Constr Build Mater. 2012;29:193-200. DOI: 10.1016/j.conbuildmat.2011.08.067.10.1016/j.conbuildmat.2011.08.067Search in Google Scholar

[18] Suchorab Z, Barnat-Hunek D, Sobczuk H. Influence of moisture on heat conductivity coefficient of aerated concrete. Ecol Chem Eng S. 2011;18(1):111-120. http://tchie.uni.opole.pl/freeECE/S_18_1/Suchorab_18(S1).pdf.Search in Google Scholar

[19] Suchorab Z, Widomski M, Lagod G, Sobczuk H. Capillary rise phenomenon in aerated concrete, monitoring and simulations. Proc ECOpole. 2010;4(2):285-290. http://tchie.uni.opole.pl/ecoproc10b/SuchorabWidomski_PECO10_2.pdf.Search in Google Scholar

[20] Lo TY, Cui HZ, Tang WC, Leung WM. The effect of aggregate absorption on pore area at the interfacial zone of lightweight concrete. Constr Build Mater. 2008;22(4):135-142. DOI: 10.1016/j.conbuildmat.2006.10.011.10.1016/j.conbuildmat.2006.10.011Search in Google Scholar

[21] Tittarelli F. Oxygen diffusion through hydrophobic cement-based materials. Cem Concr Res. 2009;39(10):924-928. DOI: 10.1016/j.cemconres.2009.06.021.10.1016/j.cemconres.2009.06.021Search in Google Scholar

[22] Suchorab Z, Barnat-Hunek D, Smarzewski P, Pavlík Z, Černý R. Free of volatile organic compounds protection against moisture in building materials. Ecol Chem Eng S. 2014;21(3):401-411. DOI: 10.2478/eces-2014-0029.10.2478/eces-2014-0029Search in Google Scholar

[23] Baltazar L, Santana J, Lopes B, Correia JR, Rodrigues MP. Superficial protection of concrete with epoxy resin impregnations: influence of the substrate roughness and moisture. Mater Struct. 2015;48:1931-1946. DOI: 10.1617/s11527-014-0284-9.10.1617/s11527-014-0284-9Search in Google Scholar

[24] Osterholtz FD, Pohl ER. Kinetics of the hydrolysis and condensation of organofunctional alkoxysilanes: a review. J Adhes Sci Technol. 1992;6(2):127-149. DOI: 10.1163/156856192X00106.10.1163/156856192X00106Search in Google Scholar

[25] Czarnecki L. Polymer concretes. Cem Wap Bet. 2010;15(2):63-85.Search in Google Scholar

[26] Felekoğlu B. A method for improving the early strength of pumice concrete blocks by using alkyl alkoxy silane (AAS). Constr Build Mater. 2012;28(1):305-310. DOI: 10.1016/j.conbuildmat.2011.07.026.10.1016/j.conbuildmat.2011.07.026Search in Google Scholar

[27] Zhu YG, Kou SC, Poon CS, Dai JG, Li QY. Influence of silane-based water repellent on the durability properties of recycled aggregate concrete. Cem Concr Composit. 2013;35(1)32-38. DOI: 10.1016/j.cemconcomp.2012.08.008.10.1016/j.cemconcomp.2012.08.008Search in Google Scholar

[28] Xiong G, Luo B, Wu X, Li G, Chen L. Influence of silane coupling agent on quality of interfacial transition zone between concrete substrate and repair materials. Cem Concr Composit. 2006;28(1):97-101. DOI: 10.1016/j.cemconcomp.2005.09.004.10.1016/j.cemconcomp.2005.09.004Search in Google Scholar

[29] Chmielewska B, Czarnecki L, Sustersic J, Zajc A. The influence of silane coupling agents on the polymer mortar. Cem Concr Composit. 2006;28(9):803-810. DOI: 10.1016/j.cemconcomp.2006.04.005.10.1016/j.cemconcomp.2006.04.005Search in Google Scholar

[30] Klisinska-Kopacz A, Tislova R. Effect of hydrophobization treatment on the hydration of repair Roman cement mortars. Constr Build Mat. 2012;35:735-740. DOI: 10.1016/j.conbuildmat.2012.05.002.10.1016/j.conbuildmat.2012.05.002Search in Google Scholar

[31] MacMullen J, Zhang Z, Rirsch E, Dhakal HN, Bennett N. Brick and mortar treatment by cream emulsion for improved water repellence and thermal insulation. Ener Build. 2011;43(7):1560-1565. DOI:10.1016/j.enbuild.2011.02.014.10.1016/j.enbuild.2011.02.014Search in Google Scholar

[32] Matziaris K, Stefanidou M, Karagiannis G. Impregnation and superhydrophobicity of coated porous low-fired clay building materials. Progr Organic Coat. 2011;72(1-2):181-192. DOI: 10.1016/2011.03.012.Search in Google Scholar

[33] Rudawska A. Selected issues on establishing adhesion bonds - homogeneous and hybrid. Lublin: Monographs Lublin University of Technology; 2013.Search in Google Scholar

[34] PN-EN 828:2000 Adhesives. Determining wettability by means of measuring the contact angle and critical surface tension of solid. http://sklep.pkn.pl/pn-en-828-2000p.html.Search in Google Scholar

[35] Lugscheider E, Bobzin K. The influence on surface free energy of PVD-coatings. Surf Coat Technol. 2001;142:755-760. DOI: 10.1016/S0257-8972(01)01315-9.10.1016/S0257-8972(01)01315-9Search in Google Scholar

[36] Vedantam S, Panchagnula MV. Constitutive modeling of contact angle hysteresis. J Colloid Interf Sci. 2008;321(2):393-400. DOI: 10.1016/j.jcis.2008.01.056.10.1016/j.jcis.2008.01.05618329656Search in Google Scholar

[37] Courard L, Piotrowski T, Garbacz A. Near-to-surface properties affecting bond strength in concrete repair. Cem Concr Composit. 2014;46:73-80. DOI: 10.1016/j.cemconcomp.2013.11.005.10.1016/j.cemconcomp.2013.11.005Search in Google Scholar

[38] Żenkiewicz M, Rytlewski P, Czupryńska P, Polański J, Karasiewicz T, Engelgard W. Contact angle and surface free energy of electron-beam irradiated polymer composites. Polimery. 2008;53(6):446-451.10.14314/polimery.2008.446Search in Google Scholar

[39] Shang J, Flury M, Harsh JB, Zollars RL. Comparison of different methods to measure contact angles of soil colloids. J Colloid Interf Sci. 2008;328(8):299-307. DOI:10.1016/j.jcis.2008.09.039.10.1016/j.jcis.2008.09.03918930239Search in Google Scholar

[40] Klein NS, Bachmann J, Aguado A, Toralles-Carbonari B. Evaluation of the wettability of mortar component granular materials through contact angle measurements. Cem Concr Res. 2012;42(2):1611-1620. DOI: 10.1016/j.cemconres.2012.09.001.10.1016/j.cemconres.2012.09.001Search in Google Scholar

[41] EN 206-1:2003/A2:2006P Concrete. Specification, performance, production and conformity. http://sklep.pkn.pl/pn-en-206-1-2003-a2-2006p.html.Search in Google Scholar

[42] PN-B-06265:2004 Polish National Supplement: PN-EN 206-1:2003 Concrete. Specification, performance, production and conformity. http://sklep.pkn.pl/pn-en-206-2014-04e.html.Search in Google Scholar

[43] EN 1936:2010 Natural stone test methods - Determination of real density and apparent density, and of total and open porosity. http://sklep.pkn.pl/pn-en-1936-2010p.html.Search in Google Scholar

[44] PN-EN 1389:2005 Polish National Supplement: PN-EN 206-1:2003 Concrete. Specification, performance, production and conformity. http://sklep.pkn.pl/pn-en-1389-2005p.html.Search in Google Scholar

[45] PN-EN 12390-7:2011P Testing hardened concrete. Density of hardened concrete. http://sklep.pkn.pl/pn-en-12390-7-2011p.html.Search in Google Scholar

[46] PN-B-06250:1988 Ordinary concrete. http://sklep.pkn.pl/pn-b-06250-1988p.html.Search in Google Scholar

[47] Rudawska A, Jacniacka E. Analysis of determining surface free energy uncertainty with the Owens-Wendt method. Intern J Adhes Adhesives. 2009;29:451-457. DOI: 10.1016/j.ijadhadh.2008.09.008.10.1016/j.ijadhadh.2008.09.008Search in Google Scholar

eISSN:
1898-6196
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Chemie, Nachhaltige Chemie, Technik, Elektrotechnik, Energietechnik, Biologie, Ökologie