Zitieren

[1] Bard AJ, Parsons R, Jordan J. Standard Potentials in Aqueous Solution. New York: Marcel Dekker, Inc.; 1985.Search in Google Scholar

[2] Kim S, Park T, Lee W. Enhanced reductive dechlorination of tetrachloroethene by nano-sized mackinawite with cyanocobalamin in a highly alkaline condition. J Environ Manage. 2015;151:378-85. DOI: 10.1016/j.jenvman.2015.01.004.10.1016/j.jenvman.2015.01.004Search in Google Scholar

[3] Kim JH, Tratnyek PG, Chang YS. Rapid dechlorination of polychlorinated dibenzo-p-dioxins by bimetallic and nanosized zerovalent iron. Environ Sci Technol. 2008;42:4106-4112. DOI: 10.1021/es702560k.10.1021/es702560kSearch in Google Scholar

[4] Kluyev N, Cheleptchikov A, Brodsky E, Soyfer V, Zhilnikov V. Reductive dechlorination of polychlorinated dibenzo-p-dioxins by zerovalent iron in subcritical water. Chemosphere. 2002;46:1293-1296. DOI: 10.1016/S0045-6535(01)00276-4.10.1016/S0045-6535(01)00276-4Search in Google Scholar

[5] Wang Z, Huang W, Peng P, Fennell DE. Rapid transformation of 1,2,3,4-TCDD by Pd/Fe catalysts. Chemosphere. 2010;78:147-151. DOI: 10.1016/j.chemosphere.2009.09.066.10.1016/j.chemosphere.2009.09.066Search in Google Scholar

[6] Elliott DW, Lien H-L, Zhang W-X. Degradation of lindane by zero-valent iron nanoparticles. J Environ Eng. 2009;135:317-24. DOI: 10.1061/(ASCE)0733-9372(2009)135:5(317).10.1061/(ASCE)0733-9372(2009)135:5(317)Search in Google Scholar

[7] Klimkova S, Cernik M, Lacinova L, Filip J, Jancik D, Zboril R. Zero-valent iron nanoparticles in treatment of acid mine water from in-situ uranium leaching. Chemosphere. 2011;82:1178-84. DOI: 10.1016/j.chemosphere.2010.11.075.10.1016/j.chemosphere.2010.11.075Search in Google Scholar

[8] Li S, Wang W, Yan W, Zhang W. Nanoscale zero-valent iron (nZVI) for the treatment of concentrated Cu(II) wastewater: a field demonstration. Environ Sci: Processes Impacts. 2014;16:524-33. DOI: 10.1039/c3em00578j.10.1039/C3EM00578JSearch in Google Scholar

[9] Gillham RW, O’Hannesin SF. Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water. 1994;32:958-67. DOI: 10.1111/j.1745-6584.1994.tb00935.x.10.1111/j.1745-6584.1994.tb00935.xSearch in Google Scholar

[10] Liang L, Korte N, Gu B, Puls R, Reeter C. Geochemical and microbial reactions affecting the long-term performance of in-situ ‘iron barriers’. Adv Environ Res. 2000;4:273-86. DOI: 10.1016/S1093-0191(00)00026-5.10.1016/S1093-0191(00)00026-5Search in Google Scholar

[11] Matheson LJ, Tratnyek PG. Reductive dehalogenation of chlorinated methanes by iron metal. Environ Sci Technol. 1994;28:2045-2045. DOI: 10.1021/es00061a012.10.1021/es00061a01222191743Search in Google Scholar

[12] Arnold WA, Roberts AL. Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles. Environ Sci Technol. 2000;34:1794-805. DOI: 10.1021/es990884q.10.1021/es990884qSearch in Google Scholar

[13] Busch J, Meißner T, Potthoff A, Bleyl S, Georgi A, Mackenzie K, et al. A field investigation on transport of carbon-supported nanoscale zero-valent iron (nZVI) in groundwater. J Contam Hydrol. 2015;181:59-68. DOI: 10.1016/j.jconhyd.2015.03.009.10.1016/j.jconhyd.2015.03.00925864966Search in Google Scholar

[14] Fu F, Dionysiou DD, Liu H. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. J Hazard Mater. 2014;267:194-205. DOI: 10.1016/j.jhazmat.2013.12.062.10.1016/j.jhazmat.2013.12.06224457611Search in Google Scholar

[15] Lv X, Hu Y, Tang J, Sheng T, Jiang G, Xu X. Effects of co-existing ions and natural organic matter on removal of chromium (VI) from aqueous solution by nanoscale zero valent iron (nZVI)-Fe3O4 nanocomposites. Chem Eng J. 2013;218:55-64. DOI: 10.1016/j.cej.2012.12.026.10.1016/j.cej.2012.12.026Search in Google Scholar

[16] Hwang Y, Salatas A, Mines PD, Jakobsen MH, Andersen HR. Graduated characterization method using a multi-well microplate for reducing reactivity of nanoscale zero valent iron materials. Appl Catal B. 2016;181:314-20. DOI: 10.1016/j.apcatb.2015.07.041.10.1016/j.apcatb.2015.07.041Search in Google Scholar

[17] Fan D, Chen S, Johnson RL, Tratnyek PG. Field deployable chemical redox probe for quantitative characterization of carboxymethylcellulose modified nano zerovalent iron. Environ Sci Technol. 2015;49:10589-97. DOI: 10.1021/acs.est.5b02804.10.1021/acs.est.5b0280426218836Search in Google Scholar

[18] Fan G, Cang L, Qin W, Zhou C, Gomes HI, Zhou D. Surfactants-enhanced electrokinetic transport of xanthan gum stabilized nanoPd/Fe for the remediation of PCBs contaminated soils. Sep Purif Technol. 2013;114:64-72. DOI: 10.1016/j.seppur.2013.04.030.10.1016/j.seppur.2013.04.030Search in Google Scholar

[19] Gu C, Jia H, Li H, Teppen BJ, Boyd SA. Synthesis of highly reactive subnano-sized zero-valent iron using smectite clay templates. Environ Sci Technol. 2010;44:4258-4263. DOI: 10.1021/es903801r.10.1021/es903801r289284020446730Search in Google Scholar

[20] Wang W, Zhou M, Jin Z, Li T. Reactivity characteristics of poly(methyl methacrylate) coated nanoscale iron particles for trichloroethylene remediation. J Hazard Mater. 2010;173(1-3):724-730. DOI: 10.1016/j.jhazmat.2009.08.145.10.1016/j.jhazmat.2009.08.14519773119Search in Google Scholar

[21] Huang YC, Cheng YW. Electrokinetic-enhanced nanoscale iron reactive barrier of trichloroethylene solubilized by Triton X-100 from groundwater. Electrochim Acta. 2012;86:177-184. DOI: 10.1016/j.electacta.2012.03.048.10.1016/j.electacta.2012.03.048Search in Google Scholar

[22] Wacławek S, Antoš V, Hrabák P, Černík M, Elliott D. Remediation of hexachlorocyclohexanes by electrochemically activated persulfates. Environ Sci Pollut Res. 2015;4:1-9. DOI: 10.1007/s11356-015-5312-y.10.1007/s11356-015-5312-ySearch in Google Scholar

[23] Hrabal J, Černík M, Nosek J. Způsob in-situ sanace horninového prostředí kontaminovaného škodlivými chemickými sloučeninami (In-situ remediation of localities contaminated with harmful chemical compounds). Patent: 304152, 2013.Search in Google Scholar

[24] http://www.nanoiron.cz/en/nanofer-25sSearch in Google Scholar

[25] Virkutyte J, Sillanpää M, Latostenmaa P. Electrokinetic soil remediation - critical overview. Sci Total Environ. 2002;289:97-121. DOI: 10.1016/S0048-9697(01)01027-0.10.1016/S0048-9697(01)01027-0Search in Google Scholar

eISSN:
1898-6196
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Chemie, Nachhaltige Chemie, Technik, Elektrotechnik, Energietechnik, Biologie, Ökologie