Uneingeschränkter Zugang

Loss of mass and performance in skeletal muscle tissue: a continuum model


Zitieren

1. A. Musesti, G. G. Giusteri, and A. Marzocchi, Predicting Ageing: On the Mathematical Modelization of Ageing Muscle Tissue, in Active Age- ing and Healthy Living (G. R. et al., ed.), IOS press, 2014. Chapter 17.Search in Google Scholar

2. G. Giantesio and A. Musesti, A continuum model of skeletal muscle tissue with loss of activation, in Multiscale Models in Mechano and Tu- mor Biology: Modeling, Homogenization, and Applications (A. Gerisch, R. Penta, and J. Lang, eds.), vol. 122 of Lecture Notes in Computational Science and Engineering, Springer, in press.Search in Google Scholar

3. L. A. Taber and R. Perucchio, Modeling heart development, Journal of Elasticity, vol. 61, no. 1, pp. 165-197, 2000.10.1023/A:1011082712497Search in Google Scholar

4. G. Giantesio and A. Musesti, Strain-dependent internal parameters in hyperelastic biological materials, International Journal of Non-Linear Mechanics, vol. 95, pp. 162-167, 2017.10.1016/j.ijnonlinmec.2017.06.012Search in Google Scholar

5. D. Hawkins and M. Bey, A Comprehensive Approach for Studying Muscle-Tendon Mechanics, ASME Journal of Biomechanical Engineer- ing, vol. 116, pp. 51-55, 1994.10.1115/1.2895704Search in Google Scholar

6. R. L. Lieber and S. R. Ward, Skeletal muscle design to meet functional demands, Philosophical Transactions of the Royal Society of London B: Biological Sciences, vol. 366, no. 1570, pp. 1466-1476, 2011.Search in Google Scholar

7. J. Schröder and P. Nefi, Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions, International Journal of Solids and Structures, vol. 40, pp. 401-445, 2003.10.1016/S0020-7683(02)00458-4Search in Google Scholar

8. A. E. Ehret and M. Itskov, Modeling of anisotropic softening phenomena: Application to soft biological tissues, International Journal of Plas- ticity, vol. 25, pp. 901-919, 2009.10.1016/j.ijplas.2008.06.001Search in Google Scholar

9. A. E. Ehret, M. Böl, and M. Itskov, A continuum constitutive model for the active behaviour of skeletal muscle, Journal of the Mechanics and Physics of Solids, vol. 59, no. 3, pp. 625-636, 2011.10.1016/j.jmps.2010.12.008Search in Google Scholar

10. A. E. Ehret and M. Itskov, A polyconvex hyperelastic model for fiberreinforced materials in application to soft tissues, Journal of Materials Science, vol. 42, pp. 8853-8863, 2007.Search in Google Scholar

11. P. Nardinocchi and L. Teresi, On the Active Response of Soft Living Tissues, Journal of Elasticity, vol. 88, no. 1, pp. 27-39, 2007.10.1007/s10659-007-9111-7Search in Google Scholar

12. D. Ambrosi and S. Pezzuto, Active Stress vs. Active Strain in Mechanobiology: Constitutive Issues, Journal of Elasticity, vol. 107, pp. 199-212, 2012.10.1007/s10659-011-9351-4Search in Google Scholar

13. A. Gizzi, C. Cherubini, S. Filippi, and A. Pandolfi, Theoretical and numerical modeling of nonlinear electromechanics with applications to biological active media, Communications in Computational Physics, vol. 17, no. 1, pp. 93-126, 2015.10.4208/cicp.091213.260614aSearch in Google Scholar

14. A. Gizzi, A. Pandolfi, and M. Vasta, Viscoelectromechanics modeling of intestine wall hyperelasticity, International Journal for Computational Methods in Engineering Science and Mechanics, vol. 17, no. 3, pp. 143- 155, 2016.10.1080/15502287.2015.1082678Search in Google Scholar

15. C. A. Oatis, Kinesiology. The Mechanics and Pathomechanics of Human Movement. Lippincott Williams & Wilkins, 2nd ed., 2009.Search in Google Scholar

16. J. L. van Leeuwen, Optimum power output and structural design of sarcomeres, Journal of Theoretical Biology, vol. 149, pp. 229-256, 1991.10.1016/S0022-5193(05)80279-6Search in Google Scholar

17. M. Böl and S. Reese, Micromechanical modelling of skeletal muscles based on the finite element method, Computer Methods in Biomechanics and Biomedical Engineering, vol. 11, pp. 489-504, 2008.10.1080/10255840701771750Search in Google Scholar

18. T. Heidlauf and O. Röhrle, A multiscale chemo-electro-mechanical skeletal muscle model to analyze muscle contraction and force generation for difierent muscle fiber arrangements, Frontiers in Physiology, vol. 5, p. 498, 2014.10.3389/fphys.2014.00498Search in Google Scholar

19. A. J. Cruz-Jentoft, J. P. Baeyens, J. M. Bauer, Y. Boirie, T. Cederholm, F. Landi, F. C. Martin, J. P. Michel, Y. Rolland, S. M. Schneider, E. Topinkovfia, M. Vandewoude, and M. Zamboni, Sarcopenia: European consensus on definition and diagnosis, Age and Ageing, vol. 39, pp. 412- 423, 2010.10.1093/ageing/afq034Search in Google Scholar

20. T. Lang, T. Streeper, P. Cawthon, K. Baldwin, D. R. Taafie, and T. B. Harris, Sarcopenia: etiology, clinical consequences, intervention, and assessment, Osteoporosis International, vol. 21, pp. 543-559, 2010.10.1007/s00198-009-1059-ySearch in Google Scholar

21. S. von Haehling, J. E. Morley, and S. D. Anker, An overview of sarcopenia: facts and numbers on prevalence and clinical impact, Journal of Cachexia, Sarcopenia and Muscle, vol. 1, pp. 129-133, 2010.10.1007/s13539-010-0014-2Search in Google Scholar

22. A. DiCarlo and S. Quiligotti, Growth and balance, Mechanics Research Communications, vol. 29, no. 6, pp. 449-456, 2002.10.1016/S0093-6413(02)00297-5Search in Google Scholar

eISSN:
2038-0909
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
Volume Open
Fachgebiete der Zeitschrift:
Mathematik, Numerik und wissenschaftliches Rechnen, Angewandte Mathematik