Uneingeschränkter Zugang

Semi-implicit semi-Lagrangian modelling of the atmosphere: a Met Office perspective

Communications in Applied and Industrial Mathematics's Cover Image
Communications in Applied and Industrial Mathematics
"Special Issue on New Trends in Semi-Lagrangian Methods, Guest Editors: Luca Bonaventura, Maurizio Falcone and Roberto Ferretti

Zitieren

1. C. Temperton, M. Hortal, and A. J. Simmons, A two-time-level semi- Lagrangian global spectral model, Quarterly Journal of the Royal Meteorological Society, vol. 127, pp. 111-126, 2001.10.1002/qj.49712757107Search in Google Scholar

2. P. Courtier, C. Freydier, J. F. Geleyn, F. Rabier, and M. Rochas, The ARPEGE project at Météo-France, in ECMWF Workshop on Numerical Methods in Atmospheric Modelling, Vol. II, 2, pp. 193-231, 1991.Search in Google Scholar

3. J. Côté, S. Gravel, A. Méthot, A. Patoine, M. Roch, and A. Staniforth, The operational CMC-MRB global environmental multiscale (GEM) model. Part I: Design considerations and formulation, Monthly Weather Review, vol. 126, pp. 1373-1395, 1998.Search in Google Scholar

4. D. Chen, J. Xue, X. Yang, H. Zhang, X. Shen, J. Hu, Y. Wang, L. Ji, and J. Chen, New generation of multi-scale NWP system (GRAPES): general scientific design, Chinese Science Bulletin, vol. 53, pp. 3433- 3445, 2008.Search in Google Scholar

5. Y. Takeuchi and Others, Outline of the operational numerical weather prediction at the Japan Meteorological Agency. Appendix to WMO Technical Progress Report on the Global Data-processing and Forecasting System (GDPFS) and Numerical Weather Prediction (NWP) Research, tech. rep., JMA, 2013. Available at: http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2013-nwp/pdf/outline2013_all.pdf (Last access: 8 May 2015).Search in Google Scholar

6. M. Tolstykh, Variable resolution global semi-Lagrangian atmospheric model, Russian Journal of Numerical Analysis and Mathematical Modelling, vol. 18, pp. 347-361, 2003.10.1515/156939803769210993Search in Google Scholar

7. M. Zhao, I. Held, S. Lin, and G. Vecchi, Simulations of global hurricane climatology, inter-annual variability, and response to global warming using a 50-km resolution gcm., Journal of Climate, vol. 22, pp. 6653-6678, 2009.Search in Google Scholar

8. R. B. Neale and Others, Description of the NCAR Community Atmosphere Model (CAM5.0), tech. rep., NCAR, 2012. Available at: http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf (Last access: 17 August 2015).Search in Google Scholar

9. A. Brown, S. Milton, M. Cullen, B. Golding, J. Mitchell, and A. Shelly, Unified modeling and prediction of weather and climate: A 25-year journey, Bulletin of the American Meteorological Society, vol. 93, pp. 1865-1877, 2012.Search in Google Scholar

10. A. Staniforth and J. Côté, Semi-Lagrangian integration schemes for atmospheric models - a review, Monthly Weather Review, vol. 119, pp. 2206-2223, 1991.Search in Google Scholar

11. P. Bénard, Stability of semi-implicit and iterative centered-implicit time discretizations for various equation systems used in NWP, Monthly Weather Review, vol. 131, pp. 2479-2491, 2003.Search in Google Scholar

12. A. Staniforth and J. Thuburn, Horizontal grids for global weather prediction and climate models: a review, Quarterly Journal of the Royal Meteorological Society, vol. 138, pp. 1-26, 2012.10.1002/qj.958Search in Google Scholar

13. M. J. P. Cullen, Modelling atmospheric ows, Acta Numerica, vol. 16, pp. 67-154, 2007.10.1017/S0962492906290019Search in Google Scholar

14. M. J. P. Cullen, T. Davies, M. H. Mawson, J. A. James, S. C. Coulter, and A. Malcolm, An overview of numerical methods for the next genera-tion UK NWP and climate model, in Numerical Methods in Atmospheric Modelling, The André Robert memorial volume (C. Lin, R. Laprise, and H. Ritchie, eds.), (Ottawa, Canada), pp. 425-444, Canadian Meteoro-logical and Oceanographical Society, 1997.10.1080/07055900.1997.9687359Search in Google Scholar

15. M. C. Tapp and P. W. White, A non-hydrostatic mesoscale model, Quarterly Journal of the Royal Meteorological Society, vol. 102, pp. 277-296, 1992.10.1002/qj.49710243202Search in Google Scholar

16. T. Davies, M. J. P. Cullen, A. J. Malcolm, M. H. Mawson, A. Staniforth, A. White, and N. Wood, A new dynamical core for the Met Office's global and regional modelling of the atmosphere, Quarterly Journal of the Royal Meteorological Society, vol. 131, pp. 1759-1782, 2005.Search in Google Scholar

17. A. A. White and R. A. Bromley, Dynamically consistent, quasi-hydrostatic equations for global models with a complete representation of the Coriolis force, Quarterly Journal of the Royal Meteorological Society, vol. 121, pp. 399-418, 1995.10.1002/qj.49712152208Search in Google Scholar

18. A. A. White, B. J. Hoskins, I. Roulstone, and A. Staniforth, Consistent approximate models of the global atmosphere: shallow, deep, hydrostatic, quasi-hydrostatic and non-hydrostatic, Quarterly Journal of the Royal Meteorological Society, vol. 131, pp. 2081-2107, 2005. Search in Google Scholar

19. R. Laprise, The Euler equations of motion with hydrostatic pressure as an independent variable, Monthly Weather Review, vol. 120, pp. 197-207, 1992.10.1175/1520-0493(1992)120<0197:TEEOMW>2.0.CO;2Search in Google Scholar

20. N. Wood and A. Staniforth, The deep-atmosphere Euler equations with a mass-based vertical coordinate, Quarterly Journal of the Royal Meteorological Society, vol. 129, pp. 1289-1300, 2003.Search in Google Scholar

21. P. R. Bannon, C. H. Bishop, and J. B. Kerr, Does the surface pressure equal the weight per unit area of a hydrostatic atmosphere?, Bulletin of the American Meteorological Society, vol. 78, pp. 2637-2642, 1997.Search in Google Scholar

22. M. Zerroukat, N. Wood, and A. Staniforth, SLICE-S: A Semi-Lagrangian Inherently Conserving and Efficient scheme for transport problems on the sphere, Quarterly Journal of the Royal Meteorological Society, vol. 130, pp. 2649-2664, 2004.Search in Google Scholar

23. N. Wood, A. Staniforth, A. White, T. Allen, M. Diamantakis, M. Gross, T. Melvin, C. Smith, S. Vosper, M. Zerroukat, and J. Thuburn, An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global non-hydrostatic equations, Quarterly Journal of the Royal Meteorological Society, vol. 140, pp. 1505-1520, 2014.Search in Google Scholar

24. K.-S. Yeh, J. Côté, S. Gravel, A. Méthot, A. Patoine, M. Roch, and A. Staniforth, The CMC-MRB Global Environmental Multiscale (GEM) model. Part III: Nonhydrostatic formulation, Monthly Weather Review, vol. 130, pp. 339-356, 2002.10.1175/1520-0493(2002)130<0339:TCMGEM>2.0.CO;2Search in Google Scholar

25. M. J. P. Cullen, Alternative implementations of the semi-Lagrangian semi-implicit schemes in the ECMWF model, Quarterly Journal of the Royal Meteorological Society, vol. 127, pp. 2787-2802, 2001.Search in Google Scholar

26. M. Diamantakis, T. Davies, and N. Wood, An iterative time-stepping scheme for the Met Ofice's semi-implicit semi-Lagrangian non-hydrostatic model, Quarterly Journal of the Royal Meteorological Society, vol. 133, pp. 997-1011, 2007.10.1002/qj.59Search in Google Scholar

27. A. J. Simmons, B. J. Hoskins, and D. M. Burridge, Stability of the semi-implicit method of time integration, Monthly Weather Review, vol. 106, pp. 405-412, 1978.10.1175/1520-0493(1978)106<0405:SOTSIM>2.0.CO;2Search in Google Scholar

28. A. J. Simmons and C. Temperton, Stability of a two-time-level semi- implicit integration scheme for gravity wave motion, Monthly Weather Review, vol. 125, pp. 600-615, 1997.10.1175/1520-0493(1997)125<0600:SOATTL>2.0.CO;2Search in Google Scholar

29. J. Thuburn, Vertical discretizations giving optimal representation of normal modes: Sensitivity to the form of the pressure-gradient term, Quarterly Journal of the Royal Meteorological Society, vol. 132, pp. 2809-2825, 2006.Search in Google Scholar

30. J. Thuburn, M. Zerroukat, N. Wood, and A. Staniforth, Coupling amass-conserving semi-Lagrangian scheme (SLICE) to a semi-implicit discretisation of the shallow-water equations: minimizing the dependence on a reference atmosphere, Quarterly Journal of the Royal Mete-orological Society, vol. 136, pp. 146-154, 2010.10.1002/qj.517Search in Google Scholar

31. A. Staniforth, A. White, and N. Wood, Analysis of semi-Lagrangian trajectory computations, Quarterly Journal of the Royal Meteorological Society, vol. 129, pp. 2065-2085, 2003.Search in Google Scholar

32. N.Wood, A. A. White, and A. Staniforth, Treatment of vector equations in deep-atmosphere, semi-Lagrangian models. II: Kinematic equation, Quarterly Journal of the Royal Meteorological Society, vol. 136, pp. 507-516, 2010.10.1002/qj.565Search in Google Scholar

33. E. Cordero, N. Wood, and A. Staniforth, Impact of semi-Lagrangian trajectories on the discrete normal modes of a non-hydrostatic vertical-column model, Quarterly Journal of the Royal Meteorological Society, vol. 131, pp. 93-108, 2005.10.1256/qj.04/34Search in Google Scholar

34. E. Cordero, A. Staniforth, and N. Wood, Normal mode analysis of the New Dynamics, tech. rep., FR Technical Report No. 393, 2002. Available at: http://www.metofice.gov.uk/media/pdf/c/9/FRTR393-wontconvert.pdf (Last access 13 May 2015).Search in Google Scholar

35. J. Thuburn, N. Wood, and A. Staniforth, Normal modes of deep atmo-spheres. I: Spherical geometry, Quarterly Journal of the Royal Meteorological Society, vol. 128, pp. 1771-1792, 2002.Search in Google Scholar

36. T. Davies, A. Staniforth, N.Wood, and J. Thuburn, Validity of anelastic and other equation sets as inferred from normal-mode analysis, Quarterly Journal of the Royal Meteorological Society, vol. 129, pp. 2761-2775, 2003.Search in Google Scholar

37. A. Arakawa and C. S. Konor, Uni cation of the anelastic and quasihydrostatic systems of equations, Monthly Weather Review, vol. 137, pp. 710-726, 2009.10.1175/2008MWR2520.1Search in Google Scholar

38. J. K. Dukowicz, Evaluation of various approximations in ocean and atmospheric modeling based on an exact treatment of gravity wave dispersion, Monthly Weather Review, vol. 141, pp. 4487-4506, 2013.Search in Google Scholar

39. T. Dubos and F. Voitus, A semihydrostatic theory of gravity-dominated compressible ow, Journal of the Atmospheric Sciences, vol. 71,pp. 4621-4638, 2014.Search in Google Scholar

40. D. Walters, N. Wood, S. Vosper, and S. Milton, ENDGame: A new dynamical core for seamless atmospheric prediction, tech. rep., Met Office, 2014. Available at: http://www.metoffice.gov.uk/media/pdf/s/h/ENDGameGOVSciv2.0.pdf (Last access: 13 May 2015).Search in Google Scholar

eISSN:
2038-0909
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
Volume Open
Fachgebiete der Zeitschrift:
Mathematik, Numerik und wissenschaftliches Rechnen, Angewandte Mathematik