Open Access

Transient bioimpedance monitoring of mechanotransduction in artificial tissue during indentation


Cite

Orr AW, Helmke BP, Blackman BR, Schwartz MA. Mechanisms of mechanotransduction. Developmental cell, 2006:10(1):11-20. http://dx.doi.org/10.1016/j.devcel.2005.12.00610.1016/j.devcel.2005.12.00616399074OrrAWHelmkeBPBlackmanBRSchwartzMAMechanisms of mechanotransductionDevelopmental cell20061011120http://dx.doi.org/10.1016/j.devcel.2005.12.006Open DOISearch in Google Scholar

Chiquet M, Gelman L, Lutz R, Maier S. From mechanotransduction to extracellular matrix gene expression in fibroblasts. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2009:1793(5):911-920.10.1016/j.bbamcr.2009.01.012ChiquetMGelmanLLutzRMaierSFrom mechanotransduction to extracellular matrix gene expression in fibroblastsBiochimica et Biophysica Acta (BBA)-Molecular Cell Research200917935911920Open DOISearch in Google Scholar

Sukharev S, Sachs F. Molecular force transduction by ion channels–diversity and unifying principles. Journal of cell science, 2012:125(13):3075-3083. http://dx.doi.org/10.1242/jcs.09235310.1242/jcs.09235322797911SukharevSSachsFMolecular force transduction by ion channels–diversity and unifying principlesJournal of cell science20121251330753083http://dx.doi.org/10.1242/jcs.092353Open DOISearch in Google Scholar

Burgess PT, Perl, ER. Cutaneous mechanoreceptors and nociceptors. In Somatosensory system. Springer Berlin Heidelberg; 1973. p. 29-78. http://dx.doi.org/10.1007/978-3-642-65438-1_3BurgessPTPerlERCutaneous mechanoreceptors and nociceptors. In Somatosensory system. Springer Berlin Heidelberg1973p2978http://dx.doi.org/10.1007/978-3-642-65438-1_310.1007/978-3-642-65438-1_3Search in Google Scholar

Brownell WE, Bader CR, Bertrand D, de Ribaupierre Y. Evoked mechanical responses of isolated cochlear outer hair cells. Science, 1985:227(4683):194-196. http://dx.doi.org/10.1126/science.396615310.1126/science.39661533966153BrownellWEBaderCRBertrandDdeRibaupierre YEvoked mechanical responses of isolated cochlear outer hair cellsScience19852274683194196http://dx.doi.org/10.1126/science.3966153Open DOISearch in Google Scholar

Moss ML. The functional matrix hypothesis revisited. 1. The role of mechanotransduction. American journal of orthodontics and dentofacial orthopedics, 1997:112(1):8-11. http://dx.doi.org/10.1016/S0889-5406(97)70267-110.1016/S0889-5406(97)70267-1MossMLThe functional matrix hypothesis revisited1. The role of mechanotransduction. American journal of orthodontics and dentofacial orthopedics19971121811http://dx.doi.org/10.1016/S0889-5406(97)70267-1Open DOISearch in Google Scholar

Numaguchi K, Eguchi S, Yamakawa T, Motley ED, Inagami T. Mechanotransduction of rat aortic vascular smooth muscle cells requires RhoA and intact actin filaments. Circulation Research, 1991:85(1):5-11. http://dx.doi.org/10.1161/01.RES.85.1.5NumaguchiKEguchiSYamakawaTMotleyEDInagamiTMechanotransduction of rat aortic vascular smooth muscle cells requires RhoA and intact actin filamentsCirculation Research1991851511http://dx.doi.org/10.1161/01.RES.85.1.510.1161/01.RES.85.1.5Search in Google Scholar

Hahn C, Schwartz MA. Mechanotransduction in vascular physiology and atherogenesis. Nature Reviews Molecular Cell Biology, 2009:10(1):53-62. http://dx.doi.org/10.1038/nrm25961919733210.1038/nrm2596HahnCSchwartzMAMechanotransduction in vascular physiology and atherogenesisNature Reviews Molecular Cell Biology20091015362http://dx.doi.org/10.1038/nrm2596Search in Google Scholar

Chiquet M, Renedo AS, Huber F, Flück M. How do fibroblasts translate mechanical signals into changes in extracellular matrix production? Matrix biology, 2003:22(1):73-80http://dx.doi.org/10.1016/S0945-053X(03)00004-010.1016/S0945-053X(03)00004-0ChiquetMRenedoASHuberFFlückMHow do fibroblasts translate mechanical signals into changes in extracellular matrix production?Matrix biology20032217380http://dx.doi.org/10.1016/S0945-053X(03)00004-0Open DOISearch in Google Scholar

Langevin HM, Bouffard NA, Badger GJ, Churchill DL, Howe AK. Subcutaneous tissue fibroblast cytoskeletal remodeling induced by acupuncture: Evidence for a mechanotransduction‐ based mechanism. Journal of cellular physiology, 2006:207(3):767-774. http://dx.doi.org/10.1002/jcp.206231651183010.1002/jcp.20623LangevinHMBouffardNABadgerGJChurchillDLHoweAKSubcutaneous tissue fibroblast cytoskeletal remodeling induced by acupuncture: Evidence for a mechanotransduction‐ based mechanismJournal of cellular physiology20062073767774http://dx.doi.org/10.1002/jcp.2062316511830Search in Google Scholar

Schwarz US, Gardel ML. United we stand–integrating the actin cytoskeleton and cell–matrix adhesions in cellular mechanotransduction. Journal of cell science, 2012:125(13):3051-3060. http://dx.doi.org/10.1242/jcs.09371610.1242/jcs.09371622797913SchwarzUSGardelMLUnited we stand–integrating the actin cytoskeleton and cell–matrix adhesions in cellular mechanotransductionJournal of cell science20121251330513060http://dx.doi.org/10.1242/jcs.093716343486322797913Open DOISearch in Google Scholar

Zhang H. Labouesse M. Signalling through mechanical inputs–a coordinated process. Journal of cell science, 2012:125(13):3039-3049. http://dx.doi.org/10.1242/jcs.093666ZhangHLabouesseMSignalling through mechanical inputs–a coordinated process. Journal of cell science20121251330393049http://dx.doi.org/10.1242/jcs.09366610.1242/jcs.09366622929901Search in Google Scholar

Martinac B. Mechanosensitive ion channels: molecules of mechanotransduction. Journal of cell science, 2004:117(12):2449-2460. http://dx.doi.org/10.1242/jcs.012321515945010.1242/jcs.01232MartinacBMechanosensitive ion channels: molecules of mechanotransductionJournal of cell science20041171224492460http://dx.doi.org/10.1242/jcs.0123215159450Search in Google Scholar

Kandel ER, Schwartz JH, Jessell TM. (Eds.). Principles of neural science Vol. 4, New York: McGraw-Hill; 2000.KandelERSchwartzJHJessellTMEdsPrinciples of neural science Vol. 4New YorkMcGraw-Hill2000Search in Google Scholar

Neef K, Choi YH, Perumal Srinivasan S, Treskes P, Cowan DB, Stamm C, Wahlers T. Mechanical preconditioning enables electrophysiologic coupling of skeletal myoblast cells to myocardium. The Journal of thoracic and cardiovascular surgery, 2012:144(5):1176-1184. http://dx.doi.org/10.1016/j.jtcvs.2012.07.03610.1016/j.jtcvs.2012.07.03622980065NeefKChoiYHPerumalSrinivasan STreskesPCowanDBStammCWahlersTMechanical preconditioning enables electrophysiologic coupling of skeletal myoblast cells to myocardiumThe Journal of thoracic and cardiovascular surgery2012144511761184http://dx.doi.org/10.1016/j.jtcvs.2012.07.036433456422980065Open DOISearch in Google Scholar

Han A. Microfabricated Multi-Analysis System for Electrophysiological Studies of Single Cells. PhD Thesis, Georgia Institute of Technology, 2005.HanAMicrofabricated Multi-Analysis System for Electrophysiological Studies of Single Cells. PhD Thesis, Georgia Institute of Technology2005Search in Google Scholar

Abramochkin DV, Lozinsky IT, Kamkin A. Influence of mechanical stress on fibroblast–myocyte interactions in mammalian heart. Journal of molecular and cellular cardiology. 2014:70:27-36. http://dx.doi.org/10.1016/j.yjmcc.2013.12.0202438934410.1016/j.yjmcc.2013.12.020AbramochkinDVLozinskyITKamkinAInfluence of mechanical stress on fibroblast–myocyte interactions in mammalian heartJournal of molecular and cellular cardiology2014702736http://dx.doi.org/10.1016/j.yjmcc.2013.12.02024389344Search in Google Scholar

French AS. Mechanotransduction. Annual review of physiology, 1992:54(1):135-152. http://dx.doi.org/10.1146/annurev.ph.54.030192.00103110.1146/annurev.ph.54.030192.0010311373277FrenchASMechanotransductionAnnual review of physiology1992541135152http://dx.doi.org/10.1146/annurev.ph.54.030192.0010311373277Open DOISearch in Google Scholar

Davies PF, Barbee KA, Volin MV, Robotewskyj A, Chen J, Joseph L, Barakat AI. Spatial relationships in early signaling events of flow-mediated endothelial mechanotransduction. Annual Review of Physiology, 1997:59(1):527-549. http://dx.doi.org/10.1146/annurev.physiol.59.1.52710.1146/annurev.physiol.59.1.5279074776DaviesPFBarbeeKAVolinMVRobotewskyjAChenJJosephLBarakatAISpatial relationships in early signaling events of flow-mediated endothelial mechanotransductionAnnual Review of Physiology1997591527549http://dx.doi.org/10.1146/annurev.physiol.59.1.5279074776Open DOISearch in Google Scholar

Dalby MJ, Riehle MO, Sutherland DS, Agheli H, Curtis AS. Use of nanotopography to study mechanotransduction in fibroblasts–methods and perspectives. European journal of cell biology, 2004:83(4):159-169. http://dx.doi.org/10.1078/0171-9335-0036910.1078/0171-9335-0036915260438DalbyMJRiehleMOSutherlandDSAgheliHCurtisASUse of nanotopography to study mechanotransduction in fibroblasts–methods and perspectivesEuropean journal of cell biology2004834159169http://dx.doi.org/10.1078/0171-9335-0036915260438Open DOISearch in Google Scholar

Martinez E, Engel E, Planell JA, Samitier J. Effects of artificial micro-and nano-structured surfaces on cell behaviour. Annals of Anatomy-Anatomischer Anzeiger, 2009:191(1):126-135. http://dx.doi.org/10.1016/j.aanat.2008.05.00610.1016/j.aanat.2008.05.006MartinezEEngelEPlanellJASamitierJEffects of artificial micro-and nano-structured surfaces on cell behaviourAnnals of Anatomy-Anatomischer Anzeiger20091911126135http://dx.doi.org/10.1016/j.aanat.2008.05.00618692370Open DOISearch in Google Scholar

Ross TD, Coon BG, Yun S, Baeyens N, Tanaka K, Ouyang, M, Schwartz MA. Integrins in mechanotransduction. Current opinion in cell biology, 2013:25(5):613-618. http://dx.doi.org/10.1016/j.ceb.2013.05.0062379702910.1016/j.ceb.2013.05.006RossTDCoonBGYunSBaeyensNTanakaKOuyangMSchwartzMAIntegrins in mechanotransductionCurrent opinion in cell biology2013255613618http://dx.doi.org/10.1016/j.ceb.2013.05.006375711823797029Search in Google Scholar

Geiger B, Bershadsky A, Pankov R, Yamada KM. Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. Nature Reviews Molecular Cell Biology, 2001:2(11):793-805. http://dx.doi.org/10.1038/3509906610.1038/3509906611715046GeigerBBershadskyAPankovRYamadaKMTransmembrane crosstalk between the extracellular matrix and the cytoskeletonNature Reviews Molecular Cell Biology2001211793805http://dx.doi.org/10.1038/3509906611715046Open DOISearch in Google Scholar

Baker BM, Chen CS. Deconstructing the third dimension–how 3D culture microenvironments alter cellular cues. Journal of cell science, 2012:125(13):3015-3024. http://dx.doi.org/10.1242/jcs.07950910.1242/jcs.07950922797912BakerBMChenCSDeconstructing the third dimension–how 3D culture microenvironments alter cellular cuesJournal of cell science20121251330153024http://dx.doi.org/10.1242/jcs.079509343484622797912Open DOISearch in Google Scholar

Katsumi A, Orr AW, Tzima E, Schwartz MA. Integrins in mechanotransduction. Journal of Biological Chemistry, 2004:279(13):12001-12004. http://dx.doi.org/10.1074/jbc.R30003820010.1074/jbc.R300038200KatsumiAOrrAWTzimaESchwartzMAIntegrins in mechanotransductionJournal of Biological Chemistry2004279131200112004http://dx.doi.org/10.1074/jbc.R30003820014960578Open DOISearch in Google Scholar

Chen CS, Tan J, Tien J. Mechanotransduction at cell-matrix and cell-cell contacts. Annu. Rev. Biomed. Eng., 2004:6:275-302. http://dx.doi.org/10.1146/annurev.bioeng.6.040803.14004010.1146/annurev.bioeng.6.040803.14004015255771ChenCSTanJTienJMechanotransduction at cell-matrix and cell-cell contactsAnnu. Rev. Biomed. Eng20046275302http://dx.doi.org/10.1146/annurev.bioeng.6.040803.14004015255771Open DOISearch in Google Scholar

Wang JHC, Thampatty BP, Lin JS, Im HJ. Mechanoregulation of gene expression in fibroblasts. Gene, 2007:391(1):1-15. http://dx.doi.org/10.1016/j.gene.2007.01.01410.1016/j.gene.2007.01.01417331678WangJHCThampattyBPLinJSImHJMechanoregulation of gene expression in fibroblastsGene20073911115http://dx.doi.org/10.1016/j.gene.2007.01.014289334017331678Open DOISearch in Google Scholar

Benson K, Cramer S, Galla HJ. Impedance-based cell monitoring: barrier properties and beyond. Fluids and barriers of the CNS, 2013:10(5).BensonKCramerSGallaHJImpedance-based cell monitoring: barrier properties and beyond. Fluids and barriers of the CNS201310510.1186/2045-8118-10-5356021323305242Search in Google Scholar

Qiu Y, Liao R, Zhang X. Real-time monitoring primary cardiomyocyte adhesion based on electrochemical impedance spectroscopy and electrical cell-substrate impedance sensing. Analytical chemistry, 2008:80(4):990-996. http://dx.doi.org/10.1021/ac701745c1821501910.1021/ac701745cQiuYLiaoRZhangXReal-time monitoring primary cardiomyocyte adhesion based on electrochemical impedance spectroscopy and electrical cell-substrate impedance sensingAnalytical chemistry2008804990996http://dx.doi.org/10.1021/ac701745c18215019Search in Google Scholar

Dodde RE, Bull JL, Shih, AJ. Bioimpedance of soft tissue under compression. Physiological measurement, 2012:33(6):1095. http://dx.doi.org/10.1088/0967-3334/33/6/109510.1088/0967-3334/33/6/109522621935DoddeREBullJLShihAJBioimpedance of soft tissue under compressionPhysiological measurement20123361095http://dx.doi.org/10.1088/0967-3334/33/6/109522621935Open DOISearch in Google Scholar

Belmont B, Dodde RE, Shih AJ. Impedance of tissue-mimicking phantom material under compression. Journal of Electrical Bioimpedance, 2013:4(1):2-12. http://dx.doi.org/10.5617/jeb.443BelmontBDoddeREShihAJImpedance of tissue-mimicking phantom material under compressionJournal of Electrical Bioimpedance201341212http://dx.doi.org/10.5617/jeb.44310.5617/jeb.443Search in Google Scholar

Nam JH, Chen PC, Lu Z, Luo H, Ge R, Lin W. Force control for mechanoinduction of impedance variation in cellular organisms. Journal of Micromechanics and Microengineering, 2010:20(2):025003. http://dx.doi.org/10.1088/0960-1317/20/2/02500310.1088/0960-1317/20/2/025003NamJHChenPCLuZLuoHGeRLinWForce control for mechanoinduction of impedance variation in cellular organismsJournal of Micromechanics and Microengineering2010202025003http://dx.doi.org/10.1088/0960-1317/20/2/025003Open DOISearch in Google Scholar

Miano G, Maffucci A. Transmission lines and lumped circuits: fundamentals and applications. Academic Press; 2001.MianoGMaffucciATransmission lines and lumped circuits: fundamentals and applicationsAcademic Press200110.1016/B978-012189710-9/50009-7Search in Google Scholar

Xiang Y. The electrostatic capacitance of an inclined plate capacitor, Journal of Electrostatics, 2006:64:29-34. http://dx.doi.org/10.1016/j.elstat.2005.05.002XiangYThe electrostatic capacitance of an inclined plate capacitor, Journal of Electrostatics2006642934http://dx.doi.org/10.1016/j.elstat.2005.05.00210.1016/j.elstat.2005.05.002Search in Google Scholar

Hong J, Yoon DS, Kim SK, Kim TS, Kim S, Pak EY, No K, AC frequency characteristics of coplanar impedance sensors as design parameters, Lab on a Chip, 2005:5:270-279. http://dx.doi.org/10.1039/b410325dHongJYoonDSKimSKKimTSKimSPakEYNoKAC frequency characteristics of coplanar impedance sensors as design parameters, Lab on a Chip20055270279http://dx.doi.org/10.1039/b410325d10.1039/b410325d15726203Search in Google Scholar

Gevorgian S, Berg H. Line capacitance and impedance of coplanar-strip waveguides on substrates with multiple dielectric layers, 31st European Microwave Conference (London); 2001:1–4.GevorgianSBergHLine capacitance and impedance of coplanar-strip waveguides on substrates with multiple dielectric layers, 31st European Microwave Conference (London)20011410.1109/EUMA.2001.339161Search in Google Scholar

Hunt NC, An alginate hydrogel matrix for the localised delivery of a fibroblast/keratinocyte co-culture to expedite wound healing, PhD Thesis, University of Birmingham, 2010HuntNCAn alginate hydrogel matrix for the localised delivery of a fibroblast/keratinocyte co-culture to expedite wound healing, PhD ThesisUniversity of Birmingham2010Search in Google Scholar

Kaklamani G, Cheneler D, Grover LM, Adams MJ, Bowen J. Mechanical properties of alginate hydrogels manufactured using external gelation. Journal of the mechanical behavior of biomedical materials, 2014:36:135-142. http://dx.doi.org/10.1016/j.jmbbm.2014.04.01310.1016/j.jmbbm.2014.04.01324841676KaklamaniGChenelerDGroverLMAdamsMJBowenJMechanical properties of alginate hydrogels manufactured using external gelationJournal of the mechanical behavior of biomedical materials201436135142http://dx.doi.org/10.1016/j.jmbbm.2014.04.01324841676Open DOISearch in Google Scholar

Lin DC, Shreiber DI, Dimitriadis EK, Horkay F. Spherical indentation of soft matter beyond the Hertzian regime: numerical and experimental validation of hyperelastic models. Biomechanics and modeling in mechanobiology, 2009:8(5):345-358. http://dx.doi.org/10.1007/s10237-008-0139-910.1007/s10237-008-0139-918979205LinDCShreiberDIDimitriadisEKHorkayFSpherical indentation of soft matter beyond the Hertzian regime: numerical and experimental validation of hyperelastic modelsBiomechanics and modeling in mechanobiology200985345358http://dx.doi.org/10.1007/s10237-008-0139-9361564418979205Open DOISearch in Google Scholar

Cheneler D, Mehrban N, Bowen J. Spherical indentation analysis of stress relaxation for thin film viscoelastic materials. Rheologica Acta, 2013:52(7):695-706. http://dx.doi.org/10.1007/s00397-013-0707-510.1007/s00397-013-0707-5ChenelerDMehrbanNBowenJSpherical indentation analysis of stress relaxation for thin film viscoelastic materialsRheologica Acta2013527695706http://dx.doi.org/10.1007/s00397-013-0707-5Open DOISearch in Google Scholar

Coleman TF, Y Li. An Interior, Trust Region Approach for Nonlinear Minimization Subject to Bounds, SIAM Journal on Optimization, 1996:6:418–445. http://dx.doi.org/10.1137/080602310.1137/0806023ColemanTFYLiAn Interior, Trust Region Approach for Nonlinear Minimization Subject to BoundsSIAM Journal on Optimization19966418445http://dx.doi.org/10.1137/0806023Open DOISearch in Google Scholar

Demirel MC, So E, Ritty TM, Naidu SH, Lakhtakia A. Fibroblast Cell Attachment and Growth on Nanoengineered Sculptured Thin Films, J Biomed Mater Res B Appl Biomater., 2007:81(1):219-223. http://dx.doi.org/10.1002/jbm.b.3065616924604DemirelMCSoERittyTMNaiduSHLakhtakiaAFibroblast Cell Attachment and Growth on Nanoengineered Sculptured Thin FilmsJ Biomed Mater Res B Appl Biomater2007811219223http://dx.doi.org/10.1002/jbm.b.3065610.1002/jbm.b.3065616924604Search in Google Scholar

Tandon GP, Weng GJ. The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites. Polymer composites 1984:5(4):327-333. http://dx.doi.org/10.1002/pc.75005041310.1002/pc.750050413TandonGPWengGJThe effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned compositesPolymer composites198454327333http://dx.doi.org/10.1002/pc.750050413Open DOISearch in Google Scholar

Cukierman E, Pankov R, Stevens DR, Yamada KM. Taking cell-matrix adhesions to the third dimension. Science, 2001:294(5547):1708-1712. http://dx.doi.org/10.1126/science.10648291172105310.1126/science.1064829CukiermanEPankovRStevensDRYamadaKMTaking cell-matrix adhesions to the third dimensionScience2001294554717081712http://dx.doi.org/10.1126/science.1064829Search in Google Scholar

Zamir E, Katz BZ, Aota SI, Yamada KM, Geiger B, Kam Z. Molecular diversity of cell-matrix adhesions. Journal of cell science, 1999:112(11):1655-1669.10318759ZamirEKatzBZAotaSIYamadaKMGeigerBKamZMolecular diversity of cell-matrix adhesionsJournal of cell science1999112111655166910.1242/jcs.112.11.1655Search in Google Scholar

Rowley JA., Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials, 1991:20(1):45-53. http://dx.doi.org/10.1016/S0142-9612(98)00107-0RowleyJA.MadlambayanGMooneyDJAlginate hydrogels as synthetic extracellular matrix materialsBiomaterials19912014553http://dx.doi.org/10.1016/S0142-9612(98)00107-010.1016/S0142-9612(98)00107-0Search in Google Scholar

Smetana Jr, K. Cell biology of hydrogels. Biomaterials, 1993:14(14):1046-1050. http://dx.doi.org/10.1016/0142-9612(93)90203-E10.1016/0142-9612(93)90203-E8312457SmetanaJr, KCell biology of hydrogelsBiomaterials1993141410461050http://dx.doi.org/10.1016/0142-9612(93)90203-EOpen DOISearch in Google Scholar

Harunaga JS, Yamada KM. Cell-matrix adhesions in 3D. Matrix Biology, 2011:30(7):363-368. http://dx.doi.org/10.1016/j.matbio.2011.06.00110.1016/j.matbio.2011.06.001HarunagaJSYamadaKMCell-matrix adhesions in 3DMatrix Biology2011307363368http://dx.doi.org/10.1016/j.matbio.2011.06.001Open DOISearch in Google Scholar

Shapiro L, Cohen S. Novel alginate sponges for cell culture and transplantation. Biomaterials, 1997:18(8):583-590. http://dx.doi.org/10.1016/S0142-9612(96)00181-010.1016/S0142-9612(96)00181-09134157ShapiroLCohenSNovel alginate sponges for cell culture and transplantationBiomaterials1997188583590http://dx.doi.org/10.1016/S0142-9612(96)00181-0Open DOISearch in Google Scholar

Zhang J, Daubert CR, Foegeding EA, A proposed strain-hardening mechanism for alginate gels, Journal of Food Engineering, 2007:80(1):157-165. http://dx.doi.org/10.1016/j.jfoodeng.2006.04.057ZhangJDaubertCRFoegedingEAA proposed strain-hardening mechanism for alginate gels, Journal of Food Engineering2007801157165http://dx.doi.org/10.1016/j.jfoodeng.2006.04.05710.1016/j.jfoodeng.2006.04.057Search in Google Scholar

Smidsrød O. Molecular-basis for some physical-properties of alginates in gel state, Journal of Chemical Society: Faraday Transactions, 1975:57:263–272.SmidsrødO.Molecular-basis for some physical-properties of alginates in gel state, Journal of Chemical Society: Faraday Transactions19755726327210.1039/DC9745700263Search in Google Scholar

Clark AH, Ross-Murphy SB. Structure and mechanical properties of biopolymer gels, Advances in Polymer Science, 1987:83:59–191. http://dx.doi.org/10.1007/BFb0023332ClarkAHRoss-MurphySBStructure and mechanical properties of biopolymer gelsAdvances in Polymer Science19878359191http://dx.doi.org/10.1007/BFb002333210.1007/BFb0023332Search in Google Scholar

Blatz PJ, Sharda SC, Tschoegl NW. Strain energy function for rubberlike materials based on a generalized measure of strain, Transactions of the Society of Rheology, 1974:18(1):145-161. http://dx.doi.org/10.1122/1.54935310.1122/1.549353BlatzPJShardaSCTschoeglNWStrain energy function for rubberlike materials based on a generalized measure of strainTransactions of the Society of Rheology1974181145161http://dx.doi.org/10.1122/1.549353Open DOISearch in Google Scholar

Doi M, Kuzuu NY, Non-linear elasticity of rodlike macromolecules in condensed state, Journal of Polymer Science: Polymer Physics Edition, 1980:18:409–419. http://dx.doi.org/10.1002/pol.1980.180180301DoiMKuzuuNYNon-linear elasticity of rodlike macromolecules in condensed stateJournal of Polymer Science: Polymer Physics Edition198018409419http://dx.doi.org/10.1002/pol.1980.18018030110.1002/pol.1980.180180301Search in Google Scholar

Shapiro JM, Oyen ML. Viscoelastic analysis of single-component and composite PEG and alginate hydrogels. Acta Mechanica Sinica, 2014:30(1):7-14. http://dx.doi.org/10.1007/s10409-014-0025-x10.1007/s10409-014-0025-xShapiroJMOyenMLViscoelastic analysis of single-component and composite PEG and alginate hydrogelsActa Mechanica Sinica2014301714http://dx.doi.org/10.1007/s10409-014-0025-xOpen DOISearch in Google Scholar

Olderøy MØ, Xie M, Andreassen JP, Strand BL, Zhang Z, Sikorski P. Viscoelastic properties of mineralized alginate hydrogel beads. Journal of Materials Science: Materials in Medicine, 2012:23(7):1619-1627. http://dx.doi.org/10.1007/s10856-012-4655-x22552827OlderøyXieMAndreassenJPStrandBLZhangZSikorskiPViscoelastic properties of mineralized alginate hydrogel beadsJournal of Materials Science: Materials in Medicine201223716191627http://dx.doi.org/10.1007/s10856-012-4655-x10.1007/s10856-012-4655-xSearch in Google Scholar

Andrews JW, Bowen J, Cheneler D. Optimised determination of viscoelastic properties using compliant measurement systems. Soft Matter, 2013:9(23):5581-5593. http://dx.doi.org/10.1039/c3sm50706h10.1039/c3sm50706hAndrewsJWBowenJChenelerDOptimised determination of viscoelastic properties using compliant measurement systemsSoft Matter201392355815593http://dx.doi.org/10.1039/c3sm50706hOpen DOISearch in Google Scholar

Lee EH, Radok JRM. The contact problem for viscoelastic bodies. Journal of Applied Mechanics, 1960:27(3):438-444. http://dx.doi.org/10.1115/1.364402010.1115/1.3644020LeeEHRadokJRMThe contact problem for viscoelastic bodiesJournal of Applied Mechanics1960273438444http://dx.doi.org/10.1115/1.3644020Open DOISearch in Google Scholar

Lai WM, Hou JS, Mow VC. A triphasic theory for the swelling and deformation behaviors of articular cartilage. Journal of biomechanical engineering, 1991:113(3):245-258. http://dx.doi.org/10.1115/1.289488010.1115/1.28948801921350LaiWMHouJSMowVCA triphasic theory for the swelling and deformation behaviors of articular cartilageJournal of biomechanical engineering19911133245258http://dx.doi.org/10.1115/1.2894880Open DOISearch in Google Scholar

Huyghe JM, Janssen JD. Quadriphasic mechanics of swelling incompressible porous media. International Journal of Engineering Science, 1997:35(8):793-802. http://dx.doi.org/10.1016/S0020-7225(96)00119-X10.1016/S0020-7225(96)00119-XHuygheJMJanssenJDQuadriphasic mechanics of swelling incompressible porous mediaInternational Journal of Engineering Science1997358793802http://dx.doi.org/10.1016/S0020-7225(96)00119-XOpen DOISearch in Google Scholar

Hong W, Zhao X, Zhou J, Suo Z. A theory of coupled diffusion and large deformation in polymeric gels. Journal of the Mechanics and Physics of Solids, 2008:56(5):1779-1793. http://dx.doi.org/10.1016/j.jmps.2007.11.01010.1016/j.jmps.2007.11.010HongWZhaoXZhouJSuoZA theory of coupled diffusion and large deformation in polymeric gelsJournal of the Mechanics and Physics of Solids200856517791793http://dx.doi.org/10.1016/j.jmps.2007.11.010Open DOISearch in Google Scholar

Feng L, Jia Y, Chen X, Li X, An L. A multiphasic model for the volume change of polyelectrolyte hydrogels. The Journal of chemical physics, 2010:133(11):114904. http://dx.doi.org/10.1063/1.348423610.1063/1.348423620866154FengLJiaYChenXLiXAnLA multiphasic model for the volume change of polyelectrolyte hydrogelsThe Journal of chemical physics201013311114904http://dx.doi.org/10.1063/1.348423620866154Open DOISearch in Google Scholar

Chester SA. A constitutive model for coupled fluid permeation and large viscoelastic deformation in polymeric gels. Soft Matter, 2012:8(31):8223-8233. http://dx.doi.org/10.1039/c2sm25372k10.1039/c2sm25372kChesterSAA constitutive model for coupled fluid permeation and large viscoelastic deformation in polymeric gelsSoft Matter201283182238233http://dx.doi.org/10.1039/c2sm25372kOpen DOISearch in Google Scholar

Wang X, Hong W. A visco-poroelastic theory for polymeric gels. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 2012:468(2148):3824-3841.10.1098/rspa.2012.0385WangXHongWA visco-poroelastic theory for polymeric gels. Proceedings of the Royal Society A: MathematicalPhysical and Engineering Science2012468214838243841Open DOISearch in Google Scholar

Drozdov AD, Christiansen J. Stress–strain relations for hydrogels under multiaxial deformation. International Journal of Solids and Structures, 2013:50(22):3570-3585. http://dx.doi.org/10.1016/j.ijsolstr.2013.06.02310.1016/j.ijsolstr.2013.06.023DrozdovADChristiansenJStress–strain relations for hydrogels under multiaxial deformationInternational Journal of Solids and Structures2013502235703585http://dx.doi.org/10.1016/j.ijsolstr.2013.06.023Open DOISearch in Google Scholar

Ateshian GA, Chahine NO, Basalo IM, Hung CT. The correspondence between equilibrium biphasic and triphasic material properties in mixture models of articular cartilage. Journal of biomechanics, 2004:37(3):391-400. http://dx.doi.org/10.1016/S0021-9290(03)00252-510.1016/S0021-9290(03)00252-514757459AteshianGAChahineNOBasaloIMHungCTThe correspondence between equilibrium biphasic and triphasic material properties in mixture models of articular cartilageJournal of biomechanics2004373391400http://dx.doi.org/10.1016/S0021-9290(03)00252-5Open DOISearch in Google Scholar

Hoang SK, Abousleiman YN. Correspondence principle between anisotropic poroviscoelasticity and poroelasticity using micromechanics and application to compression of orthotropic rectangular strips. Journal of Applied Physics, 2012:112(4):044907. http://dx.doi.org/10.1063/1.474829310.1063/1.4748293HoangSKAbousleimanYNCorrespondence principle between anisotropic poroviscoelasticity and poroelasticity using micromechanics and application to compression of orthotropic rectangular stripsJournal of Applied Physics20121124044907http://dx.doi.org/10.1063/1.4748293Open DOISearch in Google Scholar

Huyghe JM, Malakpoor K, Wilson W. On the thermodynamical admissibility of the triphasic theory of charged hydrated tissues. Journal of biomechanical engineering, 2009:131(4):044504. http://dx.doi.org/10.1115/1.30495311927544610.1115/1.3049531HuygheJMMalakpoorKWilsonWOn the thermodynamical admissibility of the triphasic theory of charged hydrated tissuesJournal of biomechanical engineering20091314044504http://dx.doi.org/10.1115/1.3049531Search in Google Scholar

Aslani P, Kennedy RA. Studies on diffusion in alginate gels. I. Effect of cross-linking with calcium or zinc ions on diffusion of acetaminophen. Journal of controlled release, 1996:42(175-82. http://dx.doi.org/10.1016/0168-3659(96)01369-710.1016/0168-3659(96)01369-7AslaniPKennedyRAStudies on diffusion in alginate gels. I. Effect of cross-linking with calcium or zinc ions on diffusion of acetaminophenJournal of controlled release19964217582http://dx.doi.org/10.1016/0168-3659(96)01369-7Open DOISearch in Google Scholar

Lu XL, Wan LQ, Guo X, Mow VC. A linearized formulation of triphasic mixture theory for articular cartilage, and its application to indentation analysis. Journal of biomechanics, 2010:43(4):673-679. http://dx.doi.org/10.1016/j.jbiomech.2009.10.02610.1016/j.jbiomech.2009.10.02619896670LuXLWanLQGuoXMowVCA linearized formulation of triphasic mixture theory for articular cartilage, and its application to indentation analysisJournal of biomechanics2010434673679http://dx.doi.org/10.1016/j.jbiomech.2009.10.02619896670Open DOISearch in Google Scholar

Duan Z, An Y, Zhang J, Jiang H. The effect of large deformation and material nonlinearity on gel indentation. Acta Mechanica Sinica, 2012:28(4),1058-1067. http://dx.doi.org/10.1007/s10409-012-0122-710.1007/s10409-012-0122-7DuanZAnYZhangJJiangHThe effect of large deformation and material nonlinearity on gel indentationActa Mechanica Sinica201228410581067http://dx.doi.org/10.1007/s10409-012-0122-7Open DOISearch in Google Scholar

Wilson W, van Donkelaar CC, Huyghe JM. A comparison between mechano-electrochemical and biphasic swelling theories for soft hydrated tissues. Journal of biomechanical engineering, 2005:127(1):158-165. http://dx.doi.org/10.1115/1.18353611586879810.1115/1.1835361WilsonWvanDonkelaar CCHuygheJMA comparison between mechano-electrochemical and biphasic swelling theories for soft hydrated tissuesJournal of biomechanical engineering20051271158165http://dx.doi.org/10.1115/1.183536115868798Search in Google Scholar

Jackson AR, Yuan TY, Huang CY, Gu WY. A Conductivity Approach to Measuring Fixed Charge Density in Intervertebral Disc Tissue. Annals of biomedical engineering, 2009:37(12):2566-2573. http://dx.doi.org/10.1007/s10439-009-9792-010.1007/s10439-009-9792-019757059JacksonARYuanTYHuangCYGuWYA Conductivity Approach to Measuring Fixed Charge Density in Intervertebral Disc TissueAnnals of biomedical engineering2009371225662573http://dx.doi.org/10.1007/s10439-009-9792-0280982519757059Open DOISearch in Google Scholar

Amsden B. Solute diffusion within hydrogels. Mechanisms and models. Macromolecules, 1998:31(23):8382-8395. http://dx.doi.org/10.1021/ma980765fAmsdenBSolute diffusion within hydrogelsMechanisms and models. Macromolecules1998312383828395http://dx.doi.org/10.1021/ma980765f10.1021/ma980765fSearch in Google Scholar

Gu WY, Yao H, Vega AL, Flagler D. Diffusivity of ions in agarose gels and intervertebral disc: effect of porosity. Annals of biomedical engineering, 2004:32(12):1710-1717. http://dx.doi.org/10.1007/s10439-004-7823-410.1007/s10439-004-7823-415675682GuWYYaoHVegaALFlaglerDDiffusivity of ions in agarose gels and intervertebral disc: effect of porosityAnnals of biomedical engineering2004321217101717http://dx.doi.org/10.1007/s10439-004-7823-4Open DOISearch in Google Scholar

Gu WY, Yao H, Huang CY, Cheung HS. New insight into deformation-dependent hydraulic permeability of gels and cartilage, and dynamic behavior of agarose gels in confined compression. Journal of biomechanics, 2003:36(4):593-598. http://dx.doi.org/10.1016/S0021-9290(02)00437-21260034910.1016/S0021-9290(02)00437-2GuWYYaoHHuangCYCheungHSNew insight into deformation-dependent hydraulic permeability of gels and cartilage, and dynamic behavior of agarose gels in confined compressionJournal of biomechanics2003364593598http://dx.doi.org/10.1016/S0021-9290(02)00437-2Search in Google Scholar

Lai WM, Mow VC, Roth V. Effects of nonlinear strain-dependent permeability and rate of compression on the stress behavior of articular cartilage. Journal of biomechanical engineering, 1981:103(2):61-66. http://dx.doi.org/10.1115/1.313826110.1115/1.31382617278183LaiWMMowVCRothVEffects of nonlinear strain-dependent permeability and rate of compression on the stress behavior of articular cartilageJournal of biomechanical engineering198110326166http://dx.doi.org/10.1115/1.31382617278183Open DOISearch in Google Scholar

O'Shaughnessy B, Yang Q. Manning-Oosawa counterion condensation. Physical review letters, 2005:94(4):048302. http://dx.doi.org/10.1103/PhysRevLett.94.0483021578360710.1103/PhysRevLett.94.048302O'ShaughnessyBYangQManning-Oosawa counterion condensationPhysical review letters2005944048302http://dx.doi.org/10.1103/PhysRevLett.94.04830215783607Search in Google Scholar

Sigma-Aldrich [Internet]. Dulbecco's Modified Eagle's Medium Formulation [Updated cited 2014 April 14]. Available from: http://www.sigmaaldrich.com/life-science/cell-culture/learning-center/media-formulations/dme.htmlSigma-Aldrich [Internet]. Dulbecco's Modified Eagle's Medium Formulation [Updated cited 2014 April 14]Available fromhttp://www.sigmaaldrich.com/life-science/cell-culture/learning-center/media-formulations/dme.htmlSearch in Google Scholar

Perry RH, Green DW, Maloney, JO. Perry's chemical engineer's handbook. McGraw-Hill Book; 1984.PerryRHGreenDWMaloneyJO.Perry's chemical engineer's handbookMcGraw-Hill Book1984Search in Google Scholar

Bekin S, Sarmad S, Gürkan K, Yenici G, Keçeli G, Gürdağ G. Dielectric, thermal, and swelling properties of calcium ion‐ crosslinked sodium alginate film. Polymer Engineering & Science. 2013BekinSSarmadSGürkanKYeniciGKeçeliGGürdağGDielectric, thermal, and swelling properties of calcium ion‐ crosslinked sodium alginate filmPolymer Engineering & Science201310.1002/pen.23678Search in Google Scholar

Binns JS, Craig DQM, Hill RM, Davies MC, Melia CD, Newton JM, Dielectric characterisation of sodium alginate gels. Journal of Materials Chemistry, 1992:2(5):545-549. http://dx.doi.org/10.1039/jm992020054510.1039/jm9920200545BinnsJSCraigDQMHillRMDaviesMCMeliaCDNewtonJMDielectric characterisation of sodium alginate gelsJournal of Materials Chemistry199225545549http://dx.doi.org/10.1039/jm9920200545Open DOISearch in Google Scholar

Lin SP, Kyriakides TR, Chen JJJ. On-line observation of cell growth in a three-dimensional matrix on surface-modified microelectrode arrays. Biomaterials, 2009:30(17):3110-3117. http://dx.doi.org/10.1016/j.biomaterials.2009.03.01710.1016/j.biomaterials.2009.03.017LinSPKyriakidesTRChenJJJOn-line observation of cell growth in a three-dimensional matrix on surface-modified microelectrode arraysBiomaterials2009301731103117http://dx.doi.org/10.1016/j.biomaterials.2009.03.017465851519344948Open DOISearch in Google Scholar

Sawada A. Tarumi K, Naemura S. Effects of electric double layer and space charge polarization by plural kinds of ions on complex dielectric constant of liquid crystal materials. Japanese journal of applied physics, 1991:38(3R):1418.SawadaATarumiKNaemuraSEffects of electric double layer and space charge polarization by plural kinds of ions on complex dielectric constant of liquid crystal materialsJapanese journal of applied physics1991383R141810.1143/JJAP.38.1418Search in Google Scholar

Bordi F, Cametti C, Colby RH. Dielectric spectroscopy and conductivity of polyelectrolyte solutions. Journal of Physics: Condensed Matter, 2004:16(49):R1423. http://dx.doi.org/10.1088/0953-8984/16/49/R01BordiFCamettiCColbyRHDielectric spectroscopy and conductivity of polyelectrolyte solutionsJournal of Physics: Condensed Matter20041649R1423http://dx.doi.org/10.1088/0953-8984/16/49/R0110.1088/0953-8984/16/49/R01Search in Google Scholar

Sawada A. Internal electric fields of electrolytic solutions induced by space-charge polarization. Journal of applied physics, 2006:100(7):074103. http://dx.doi.org/10.1063/1.235544910.1063/1.2355449SawadaAInternal electric fields of electrolytic solutions induced by space-charge polarizationJournal of applied physics20061007074103http://dx.doi.org/10.1063/1.2355449Open DOISearch in Google Scholar

Thoumine O, Ott A. Time scale dependent viscoelastic and contractile regimes in fibroblasts probed by microplate manipulation. Journal of cell science, 1997:110(17):2109-2116.9378761ThoumineOOttATime scale dependent viscoelastic and contractile regimes in fibroblasts probed by microplate manipulationJournal of cell science1997110172109211610.1242/jcs.110.17.2109Search in Google Scholar

Park S, Koch D, Cardenas R, Käs J, Shih CK. Cell motility and local viscoelasticity of fibroblasts. Biophysical journal, 2005:89(6):4330-4342. http://dx.doi.org/10.1529/biophysj.104.05346210.1529/biophysj.104.05346216199496ParkSKochDCardenasRKäs JShihCKCell motility and local viscoelasticity of fibroblastsBiophysical journal200589643304342http://dx.doi.org/10.1529/biophysj.104.053462Open DOISearch in Google Scholar

Ruoslahti E, Reed JC. Anchorage dependence, integrins, and apoptosis. Cell, 1994:77(4):477-478. http://dx.doi.org/10.1016/0092-8674(94)90209-710.1016/0092-8674(94)90209-78187171RuoslahtiEReedJCAnchorage dependence, integrins, and apoptosisCell1994774477478http://dx.doi.org/10.1016/0092-8674(94)90209-7Open DOISearch in Google Scholar

Ingber DE. Mechanochemical switching between growth and differentiation by extracellular matrix, In: Lanza RP, Langer R, Chick WL, editors. Principles of tissue engineering. Austin, TX: R.G. Landes Company, 1997:89-100.IngberDEMechanochemical switching between growth and differentiation by extracellular matrixInLanzaRPLangerRChickWLeditorsPrinciples of tissue engineeringAustin, TXR.G. Landes Company199789100Search in Google Scholar

Chiquet M, Tunc-Civelek V, Sarasa-Renedo A. Gene regulation by mechanotransduction in fibroblasts. Applied Physiology, Nutrition, and Metabolism, 2007:32(5):967-973. http://dx.doi.org/10.1139/H07-05310.1139/H07-053ChiquetMTunc-CivelekVSarasa-RenedoAGene regulation by mechanotransduction in fibroblastsApplied Physiology, Nutrition, and Metabolism2007325967973http://dx.doi.org/10.1139/H07-053Open DOISearch in Google Scholar

Ko KS, McCulloch CA. Intercellular mechanotransduction: cellular circuits that coordinate tissue responses to mechanical loading. Biochemical and biophysical research communications, 2001:285(5):1077-1083. http://dx.doi.org/10.1006/bbrc.2001.51771147876310.1006/bbrc.2001.5177KoKSMcCullochCAIntercellular mechanotransduction: cellular circuits that coordinate tissue responses to mechanical loadingBiochemical and biophysical research communications2001285510771083http://dx.doi.org/10.1006/bbrc.2001.5177Search in Google Scholar

Shyy JY, Chien S. Role of integrins in cellular responses to mechanical stress and adhesion. Current opinion in cell biology, 1997:9(5):707-713. http://dx.doi.org/10.1016/S0955-0674(97)80125-1933087510.1016/S0955-0674(97)80125-1ShyyJYChienSRole of integrins in cellular responses to mechanical stress and adhesionCurrent opinion in cell biology199795707713http://dx.doi.org/10.1016/S0955-0674(97)80125-1Search in Google Scholar

Van Den Brink GR, Bloemers SM, Van Den Blink B, Tertoolen LG, Van Deventer SJ, Peppelenbosch MP. Study of calcium signaling in non‐excitable cells. Microscopy research and technique, 1999:46(6):418-433. http://dx.doi.org/10.1002/(SICI)1097-0029(19990915)46:6<418::AID-JEMT9>3.0.CO;2-010.1002/(SICI)1097-0029(19990915)46:6<418::AID-JEMT9>3.0.CO;2-010504218VanDen Brink GRBloemersSMVanDen Blink BTertoolenLGVanDeventer SJPeppelenboschMPStudy of calcium signaling in non‐excitable cellsMicroscopy research and technique1999466418433http://dx.doi.org/10.1002/(SICI)1097-0029(19990915)46:6<418::AID-JEMT9>3.0.CO;2-0Open DOISearch in Google Scholar

Ingber DE. Tensegrity: the architectural basis of cellular mechanotransduction. Annual review of physiology, 1997:59(1):575-599. http://dx.doi.org/10.1146/annurev.physiol.59.1.575907477810.1146/annurev.physiol.59.1.575IngberDETensegrity: the architectural basis of cellular mechanotransductionAnnual review of physiology1997591575599http://dx.doi.org/10.1146/annurev.physiol.59.1.575Search in Google Scholar

Choquet D, Felsenfeld DP, Sheetz MP. Extracellular matrix rigidity causes strengthening of integrin–cytoskeleton linkages. Cell, 1997:88(1):39-48. http://dx.doi.org/10.1016/S0092-8674(00)81856-510.1016/S0092-8674(00)81856-59019403ChoquetDFelsenfeldDPSheetzMPExtracellular matrix rigidity causes strengthening of integrin–cytoskeleton linkagesCell19978813948http://dx.doi.org/10.1016/S0092-8674(00)81856-5Open DOISearch in Google Scholar

Walker RG, Willingham AT, Zuker CS. A Drosophila mechanosensory transduction channel. Science, 2000:287(5461):2229-2234. http://dx.doi.org/10.1126/science.287.5461.22291074454310.1126/science.287.5461.2229WalkerRGWillinghamATZukerCSA Drosophila mechanosensory transduction channelScience2000287546122292234http://dx.doi.org/10.1126/science.287.5461.2229Search in Google Scholar

Iqbal J, Zaidi M. Molecular regulation of mechanotransduction. Biochemical and biophysical research communications, 2005:328(3):751-755. http://dx.doi.org/10.1016/j.bbrc.2004.12.0871569441010.1016/j.bbrc.2004.12.087IqbalJZaidiMMolecular regulation of mechanotransductionBiochemical and biophysical research communications20053283751755http://dx.doi.org/10.1016/j.bbrc.2004.12.087Search in Google Scholar

Wright MO, Stockwell RA, Nuki G. Response of plasma membrane to applied hydrostatic pressure in chondrocytes and fibroblasts. Connective tissue research, 1992:28(1-2):49-70. http://dx.doi.org/10.3109/03008209209014227162849010.3109/03008209209014227WrightMOStockwellRANukiGResponse of plasma membrane to applied hydrostatic pressure in chondrocytes and fibroblastsConnective tissue research1992281-24970http://dx.doi.org/10.3109/03008209209014227Search in Google Scholar

Shi ZD, Tarbell JM. Fluid flow mechanotransduction in vascular smooth muscle cells and fibroblasts. Annals of biomedical engineering, 2011:39(6):1608-1619. http://dx.doi.org/10.1007/s10439-011-0309-22147975410.1007/s10439-011-0309-2ShiZDTarbellJMFluid flow mechanotransduction in vascular smooth muscle cells and fibroblastsAnnals of biomedical engineering201139616081619http://dx.doi.org/10.1007/s10439-011-0309-2Search in Google Scholar

Shoichet MS, Li RH, White ML, Winn SR. Stability of hydrogels used in cell encapsulation: An in vitro comparison of alginate and agarose. Biotechnology and bioengineering, 2006:50(4):374-381. http://dx.doi.org/10.1002/(SICI)1097-0290(19960520)50:4<374::AID-BIT4>3.0.CO;2-IShoichetMSLiRHWhiteMLWinnSRStability of hydrogels used in cell encapsulation: An in vitro comparison of alginate and agaroseBiotechnology and bioengineering2006504374381http://dx.doi.org/10.1002/(SICI)1097-0290(19960520)50:4<374::AID-BIT4>3.0.CO;2-I10.1002/(SICI)1097-0290(19960520)50:4<374::AID-BIT4>3.0.CO;2-ISearch in Google Scholar

Ko KS, Arora PD, McCulloch CA. Cadherins mediate intercellular mechanical signaling in fibroblasts by activation of stretch-sensitive calcium-permeable channels. Journal of Biological Chemistry, 2001:276(38):35967-35977. http://dx.doi.org/10.1074/jbc.M10410620010.1074/jbc.M104106200KoKSAroraPDMcCullochCACadherins mediate intercellular mechanical signaling in fibroblasts by activation of stretch-sensitive calcium-permeable channelsJournal of Biological Chemistry2001276383596735977http://dx.doi.org/10.1074/jbc.M104106200Open DOISearch in Google Scholar

Harootunian AT, Kao JP, Paranjape S, Tsien RY. Generation of calcium oscillations in fibroblasts by positive feedback between calcium and IP3. Science, 1991:251(4989), 75-78. http://dx.doi.org/10.1126/science.1986413198641310.1126/science.1986413HarootunianATKaoJPParanjapeSTsienRYGeneration of calcium oscillations in fibroblasts by positive feedback between calcium and IP3Science199125149897578http://dx.doi.org/10.1126/science.1986413Search in Google Scholar

McNeil SE, Hobson SA, Nipper V, Rodland, KD. Functional calcium-sensing receptors in rat fibroblasts are required for activation of SRC kinase and mitogen-activated protein kinase in response to extracellular calcium. Journal of Biological Chemistry, 1998:273(2):1114-1120. http://dx.doi.org/10.1074/jbc.273.2.111410.1074/jbc.273.2.1114McNeilSEHobsonSANipperVRodlandKDFunctional calcium-sensing receptors in rat fibroblasts are required for activation of SRC kinase and mitogen-activated protein kinase in response to extracellular calciumJournal of Biological Chemistry1998273211141120http://dx.doi.org/10.1074/jbc.273.2.1114Open DOISearch in Google Scholar

De Roos AD, Willems PH, Van Zoelen EJ, Theuvenet AP. Synchronized Ca2+ signaling by intercellular propagation of Ca2+ action potentials in NRK fibroblasts. American Journal of Physiology-Cell Physiology, 1997:273(6):C1900-C1907.10.1152/ajpcell.1997.273.6.C1900DeRoos ADWillemsPHVanZoelen EJTheuvenetAPSynchronized Ca2+ signaling by intercellular propagation of Ca2+ action potentials in NRK fibroblastsAmerican Journal of Physiology-Cell Physiology19972736C1900C1907Open DOISearch in Google Scholar

Breitwieser GE. Extracellular calcium as an integrator of tissue function. The international journal of biochemistry & cell biology, 2008:40(8):1467-1480. http://dx.doi.org/10.1016/j.biocel.2008.01.01910.1016/j.biocel.2008.01.01918328773BreitwieserGEExtracellular calcium as an integrator of tissue functionThe international journal of biochemistry & cell biology200840814671480http://dx.doi.org/10.1016/j.biocel.2008.01.019Open DOISearch in Google Scholar

DuFort CC, Paszek MJ, Weaver, VM. Balancing forces: architectural control of mechanotransduction. Nature Reviews: Molecular cell biology, 2011:12(5):308-319. http://dx.doi.org/10.1038/nrm31122150898710.1038/nrm3112DuFortCCPaszekMJWeaverVMBalancing forces: architectural control of mechanotransductionNature Reviews: Molecular cell biology2011125308319http://dx.doi.org/10.1038/nrm3112356496821508987Search in Google Scholar